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Abstract: Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical

analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather

forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The

staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was

performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid

was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either

numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the

errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid

were found to support the analysis.
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Introduction

Numerical weather prediction (NWP) model uses

various discretization method and grid structure

(Haltiner and Williams, 1980; Gates, 1992; Klemp,

2011; Kang and Cheong, 2017). As the computing

resources to run the model becomes powerful, the

spatial resolution of the NWP model has been

increased steadily (Tomita and Satoh, 2004). In

general, the vertical resolution is much higher than the

horizontal resolution because the vertical variation of

atmospheric motion and state is much stronger than

the horizontal due to a large horizontal-to-vertical ratio

of atmospheric layer (Haltiner and Williams, 1980).

In traditional NWP models the grid-size of the

horizontal grid is not uniform, as is characterized by

the latitude-longitude grid system (Smagorinsky, 1963;

Arakawa, 1972; Hoskins and Simmons, 1975; Arakawa

and Lamb, 1977). Although the lat-lon grid system is

still used in some models and operational NWP

centers (Saito et al., 2006; Skamarock and Klemp,

2008), the quasi-uniform grid system has gained

increasing popularity (Rivier et al., 2002; Tomita and

Satoh, 2004; Nair et al., 2005; Zhang and Rancic,

2007; Marras et al., 2015; Choi and Hong, 2016;

Kang and Cheong, 2017, 2018). In the vertical

direction, the grid-size varies substantially with height,

typically decreasing from the middle level towards

lower and upper boundaries (Gal-Chen and Somerville,

1975; Haltiner and Williams, 1980; Simmons and

Burridge, 1981; Saito et al., 2006). This is because,

unlike the horizontal domain, the atmosphere is

bounded by the Earth’s surface and upper boundary,

and it is needed to resolve the atmospheric motion

and state with finer grid near the boundaries where

the flow speed changes steeply (Haltiner and

Williams, 1980; Leuenberger et al., 2010; Klemp,

2011). Since there is no clear physical boundary in the

upper atmosphere, not as the surface boundary, the

NWP model usually sets a constant pressure level or

height level as the upper boundary.

The nonuniform grid in the vertical direction is
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regarded as an essential component of the NWP

model as is convinced in numerical weather predictions

(Haltiner and Williams, 1980; Saito et al., 2006;

Klemp 2011). However, the nonuniform grid, in

comparison with the uniform grid, is known to

provide less discretization accuracy for the governing

equations of the atmospheric motions and state

(Arakawa and Lamb, 1977; Durran, 1999). In spite of

this inherent deficiency of the nonuniform grid, little

attention has been paid to the systematic accuracy

assessment so far.

In this study, the accuracy of the nonuniform grid

for the two-dimensional transport equation is examined.

For simplicity and clarity, the grid structure is given to

be symmetric with respect to the middle point of the

vertical domain. The nonuniform grid is established in

such a way to maintain the ratio of larger-to-smaller

grid-size of neighboring vertical grid-points to be the

same. The paper is organized as follows. Next section

will present the two-dimensional transport equation

and boundary conditions. Section 3 shows the

discretization method and theoretical error analysis

with a focus on the nonuniformity of the grid-size.

Initial conditions and analytic solution are provided in

section 4. Results of numerical experiment and

discussion in comparison with the theoretical analysis

will be given in the subsequent section. Concluding

remark is presented in the final section.

Transport Equation and
Boundary Conditions

 

 Two dimensional transport (advection) equation for

an arbitrary scalar variable h is written as:

, (1)

where u and w are the advection velocity of x and z

direction, respectively. Velocity field is given to be

nondivergent, that is, . The nondiver-

gence of the flow makes it feasible to introduce the

streamfunction such that  and .

Model domain is set as  and , and

the boundary condition of Eq. (1) is set as follows:

(2)

In the case where the scalar variable at boundaries

is given initially zero, it remains as zero-valued at any

time during time evolution. This is expressed as the

following relationship:

(3)

Discretization Method

Equation (1) is solved numerically for a given

initial field of h and velocity field (u, w) using the

third-order Runge Kutta scheme (Nair et al., 2005)

and the FDM for the time and the space, respectively.

The grid system used in this study is uniform in x-

direction but nonuniform in the vertical direction, as

shown in Fig. 1. Such a grid system is a typical one

∂h
∂t
------ u

∂h
∂x
------ w

∂h
∂z
------+ + 0=

∂u
∂x
------

∂w
∂z
-------+ 0=

u
∂ψ
∂z
-------–= w

∂ψ
∂x
-------=

0 x L≤ ≤ 0 z H≤ ≤

h 0 z,( ) h L z,( )=

u 0 z,( ) u L z,( )=

w 0 z,( ) w L z,( )=
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∂u
∂z
------ x 0,( ) ∂u

∂z
------ x H,( ) 0.==

h x 0,( ) h x ut 0,–( )=

h x H,( ) h x ut H,–( ).=

Fig. 1. Nonuniform grid system of the present study: The

grid interval in z-direction is nonuniform with decreasing

toward the upper and lower boundaries while the interval in

x-direction is uniform.
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adopted in the numerical weather prediction models

(Haltiner and Williams, 1980; Tomita and Satoh,

2004; Skamarock and Klemp, 2008). The grid interval

in z-direction decreases monotonically from the mid-

level toward the boundaries. In the present study, the

ratio of two adjacent grid-intervals is kept at a

constant value γ in the lower half domain and γ
−1

 in

the upper half domain, which is controlled as a model

parameter. A typical value of γ in operational model is

1.0-1.2 (e.g., Saito et al., 2006; Haiden et al., 2017).

Location of variables is depicted in Fig. 2 together

with the vertical nonuniform grids. Non-staggered grid

is used in the horizontal direction, while staggered

grid is adopted in the vertical direction: All variables

are located in the same vertical line, and the scalar

variable and horizontal velocity are placed in the

middle of vertical grid-points. By choosing this grid-

system, it is possible to focus on the effect of the

vertical nonuniform grid on the transport equation.

Third-order Runge Kutta scheme is written as

follows (Nair et al., 2005):

(4)

where the superscript n means time-level of time-

stepping procedure, that is,  with δt being

the time-step size, and T implies the time tendency of

the equation.

Spatial discretization is performed with FDM: For

the horizontal discretization the second-order centered

FDM is used, while for the vertical discretization the

staggered-grid 3-points stencil FDM is chosen. The

discrete form of these methods can be derived based

on the Taylor series. The procedure to derive the finite

difference form related to these methods is explained

briefly. Taylor series of an arbitrary function f (z) at

z + α is given as follows

(5)

where  and n! ≡ n · (n − 1)···2 · 1. Let the

function f (z) be defined on discrete grid-points zk,

which is denoted by f (zk). The grid interval is defined

as . Then, the above equation is written

with grid-point indices for an arbitrary grid-point zp as:

(6)

where the subscript p is an integer, , and

R means higher-order terms than the fourth.

Second-order FDM in x-direction is approximated

with a centered difference as following

(7)

where (i, k) means the grid-index corresponding to

(xi, zk) and Ξ implies the gridsize in the x-direction.

Eq. (7) was obtained by neglecting the second-order

or higher order terms from the Taylor expansions.

Staggered-grid FDM on 3-points stencil for the

vertical advection term is approximated in terms of an

average of finite difference around the target point

(Arakawa and Lamb, 1977; Haltiner and Williams,

1980; Tomita and Satoh, 2004; Cheong, 2006; Haiden

et al., 2017):
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Fig. 2. Location of variables. Cross mark denotes the sca-

lar variable, and open circle and solid circle denote x-direc-

tion velocity and z-direction velocity, respectively.
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(8)

As is expected from the Taylor series, this gives the

second order accuracy for a uniform grid system and

constant vertical velocity, while it is only first-order

accuracy for nonuniform grid system regardless of the

specific value of vertical velocity. Since the discreti-

zation error for the nonuniform grid is first-order, this

scheme invites numerical diffusion in the vertical

direction depending on the sign of advection speed.

For uniform grid and constant speed (c), the finite

difference form of the vertical advection term is

written as

(9)

When the above identity is applied to the advection

equation, it is clear that the second-order derivative

term acts as diffusion for c < 0 and upward increasing

grid-size (i.e., the case of > ) and c > 0 and

downward increasing grid-size (i.e., the case of  

< ). Negative diffusion is unavoidable in this

scheme because three points including the target point

at the center should be incorporated unlike the upwind

differencing which uses only two points selectively.

In the case where the advection velocity is not a

constant value, Eq. (9) is rewritten as

(10)

where

(11a)

(11b)

Equation (11) states that the coefficient of the

discarded second-order term depends on the grid-

interval and the advection velocity, which can be

either positive (numerical adverse diffusion) or

negative (numerical diffusion) as in the case of

constant speed. This combined effect is expected to

result in different behavior of the discretization error

from the case of constant advection velocity.

Initial Condition, Analytic Solution, 
and Model Parameters

In numerical modeling of the atmospheric

circulation, analytic solutions are often used to assess

the accuracy of discretization (Browning et al., 1989;

Williamson et al., 1992; Cheong, 2006; Cheong and

Park, 2007; Flyer and Wright, 2007). In this study, the

velocity field is specified as a pair of circulation cells

of different sign (cell L and cell R), of which

streamfunction, x-direction and z-direction velocity

components are given as

(12a)

    , (12b-e)
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The flow pattern is very similar to the rotational

flow on the sphere (Nair et al., 2005; Flyer and

Wright, 2007; Cheong et al., 2015). The angular

velocity of the advection flow is then written as

(14)

Scalar field is given in the form of a Gaussian bell,

which is expressed as

(15)

where r0= 0.3H and +

, and θc(r, t) denotes the azimuthal location of

the Gaussian bell. Due to the circularity of the

advection flow, it can be written as θc(r, t)=ω(r)t,

which enables to specify the scalar field at any time

(ω=angular speed).

The horizontal domain is set to be twice of the

vertical domain so that two circular advection flows

can be included in the model domain. The model

equation is scaled is such a way that both the

maximum advection flow and the vertical range are

unity. In the control run, the number of the grid-point

in z-direction is set Nz= 30 and that of x-direction is

set as Nx= 2Nz, with which the spatial resolutions in

both directions are the same for the uniform grid

spacing. Time integration is carried out until the

maximum advection flow transports the scalar field

along azimuthal direction by the nondimensional

distance of 0.3 at the radial distance of r = 0.25H. The

time-step size is given large enough to make the CFL

number be unity for the smallest grid-size, which is

smaller than the marginal value ( ) for the stability

(Nair et al., 2005; Kang and Cheong, 2017).

Results and Discussion

As depicted in section 3, the numerical error will

depend on grid structure (that is, non-uniformity) as

well as the advection flow configuration even though

the discretization method is the same. This issue was

taken into consideration by defining the initial scalar

field at various locations. Figure 3 illustrates two

examples of the initial distribution of the scalar field.

In the first example, which corresponds to the control

run, two scalar fields are located in the same position

and the scalar variable is advected away from the

boundary, as indicated by arrows. In the case of the

nonuniform grid, this means that it is transported from

fine vertical-resolution region to coarse vertical-

resolution region. In the lower-panel example, the left

cell has the initial scalar field in the same position the

upper panel. On the other hand, the right cell has the

scalar field near the upper boundary so that it is

transported from the coarse vertical-resolution region

ω r( )
υθ x z,( )

r
-----------------

∂ψ
r∂r
-------≡ ≡

π

r1
----– sin 2πr1( ) for cell L

+
π

r2
----sin 2πr2( ) for cell R

.

⎩
⎪
⎨
⎪
⎧

=

h x z t, ,( ) exp
r r0–( )2

0.1H
-----------------–=

×exp
θ θc r t,( )2–

D θ( )
-------------------------– ,

Dθ 0.3H( )2 r 0.3H–( )2–=

10
4–
H

3

Fig. 3. Examples of initial tracer distribution (shaded cir-

cle), the streamfunction (solid and broken lines), and corre-

sponding advection direction (thick arrow). See the text for

more detailed explanation.
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to the fine vertical-resolution region. It is expected

that transport of the scalar field across different

resolution grids will result in different error behavior.

To assess the accuracy, the root mean squared error

(RMSE) is measured for each circulation cell:

, (16)

where hs and hr mean the simulated field and

reference field, respectively.

Figure 4 presents the simulation results for the

control run. As is expected from flow configuration,

the error distribution is exactly symmetric with respect

to the vertical line x = L/2 (=0.5 in non-dimensional

unit). This is because the centered FDM is employed

in x-direction, which, unlike the vertical discretization,

has the same error for both directions (negative and

positive x-direction). Summary of simulations with

various initial location of tracer, spatial resolutions,

and non-uniformity, is shown in Table 1. The results

clearly exhibit the second-order error convergence for

the uniform grid. For instance, the error of case III is

reduced by a factor of about 4 in comparison with the

case II. The same holds true for the cases of III and

IV. It is noticeable that the error for the nonuniform

grid is quite sensitive to the initial location of the

tracer as can be seen the results of the cases from V

to X. In the cases of the nonuniform grid, the error of

downdraft motion in the stretching-grid region (i.e.,

the grid-size increases with height) is larger than the

downdraft in the shrinking-grid region (i.e., the grid-

size decreases with height). This tendency becomes

more conspicuous for increased nonuniformity, e.g.,

RMSE
hs i k,( ) hr i k,( )–

NxNz

-----------------------------------⎝ ⎠
⎛ ⎞

2

k 1=

N
z

∑
i 1=

N
x

∑=

Fig. 4. Simulation results of the reference case. Contour plot superimposed on the velocity vector field represents the initial dis-

tribution of the tracer. Contour plot in the right bottom panel is the error of the tracer field, where positive (negative) values are

in solid (dashed) lines.



Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model 323

the cases of from V to X. Such a behavior is well

illustrated in Fig. 5 which corresponds to the case V.

Error patterns appear in wave train with alternating

sign, and more contour lines, being indicative of larger

error, is clearly seen in the left circulation cell. The

reason for this asymmetric error behavior may be that

the initial condition of Gaussian bell is resolved not in

an identical accuracy. It is certain that the initial tracer

located in the fine-grid region better resolves the

Gaussian bell than that located in the coarse-grid

region. This is well illustrated in Fig. 6 where the

results of case V are plotted. Obviously, the initial

tracer over the left cell is defined on smaller number

of grid-points than the right cell.

To identify the combined effect of nonuniformity of

grid and the stretching or shrinking motion in the

vertical direction more clearly, an experiment with

circular (i.e., axisymmetric) pattern of tracer distribution

was conducted. Since both the flow pattern and the

tracer distribution are axisymmetric, the error pattern

also should be axisymmetric if the error source

associated with the spatial discretization is axisym-

Fig. 5. Same as Fig. 4 except for the case II (Nx= 60, Nz= 30, γ = 1.00).

Table 1 Cases of numerical experiments where Nx (Nz) is number of horizontal (vertical) grid and γ means the nonuniformity of

vertical grid (for definition, see the text). The CFL number is given as unity for all experiments. Symbol H (L) implies the size

of horizontal (vertical) domain

case Nx Nz γ
RMSE

(cell L, cell R)

Ctrl 60 30 1.00 (0.5,0.2) (1.5,0.2) (0.04463, 0.04463)

I 60 30 1.00 (0.5,0.8) (1.5,0.8) (0.04463, 0.04463)

II 60 30 1.00 (0.8,0.5) (1.5,0.8) (0.04316, 0.04463)

III 120 60 1.00 (0.8,0.5) (1.5,0.8) (0.01515, 0.01507)

IV 240 120 1.00 (0.8,0.5) (1.5,0.8) (0.004183, 0.004094)

V 60 30 1.05 (0.8,0.5) (1.5,0.8) (0.05331, 0.04399)

VI 60 30 1.10 (0.8,0.5) (1.5,0.8) (0.05944, 0.04095)

VII 120 60 1.10 (0.8,0.5) (1.5,0.8) (0.03813, 0.01189)

VIII 60 30 1.20 (0.8,0.5) (1.5,0.8) (0.06396, 0.03523)

IX 120 60 1.20 (0.8,0.5) (1.5,0.8) (0.04597, 0.01163)

X 120 60 1.20 (0.5,0.8) (1.8,0.5) (0.01163, 0.04597)

x1c
L
------

z1c
H
-----,⎝ ⎠

⎛ ⎞ x2c
L
------

z2c
H
-----,⎝ ⎠

⎛ ⎞
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metric. Result of this case is shown in Fig. 7, where

the error pattern is not found to be axisymmetric. This

is attributed to the non-uniformity of the grid and

stretching or shrinking motion in the vertical direction.

Combined effect of these two factors is represented

with Eq. (11b). The error source may be termed as

either numerical diffusion (E2< 0) or numerical

adverse-diffusion (E2> 0). The largest error, therefore,

is directly associated with the largest value of E2,

which may be observed in the updraft or downdraft

near the boundaries. The adverse diffusion causes the

time integration unstable while the diffusion does not.

Of the two factors in Eq. (11b), the stretching or

shrinking of the flow in the vertical direction is more

important than the non-uniformity of the grid as for

the two dimensional circulation. This is because the

ratio of stretching velocity, for adjacent two grid

points, is well above 3 or 4 for in the level near the

Fig. 7. Same as the case VII (Nx= 120, Nz= 60, γ = 1.1) except for the circular pattern of the initial condition.

Fig. 6. Same as Fig. 4 except for the case V (Nx= 60, Nz= 30, γ = 1.05).
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boundaries, being much larger than the value of γ.

Since the error pattern is advected along the circular

trajectory, it can be imagined easily that the error at

the initial stage is distributed near the boundaries.

That is, the vertical distribution of |E2| is severely

confined to the region of strong velocity-stretching. If

the results are applied to the atmospheric circulation

model, it may be stated that the updraft in the

boundary layer accompanied by the horizontal

convergence is vulnerable to large numerical error.

Concluding Remarks

The effect of nonuniform grid on the two

dimensional transport phenomenon was investigated

based on the numerical simulations and error analysis.

Main concern of the study was the vertical

discretization and nonuniform staggered-grid which

resembled the weather forecast model in a qualitative

sense. Discretization method in time was the third-

order Runge-Kutta scheme, while for spatial

discretization the FDM on the staggered-grid 3-points

stencil in the vertical direction and the centered FDM

in the horizontal direction were used. Error analysis

indicated that the vertical discretization produces

numerical adverse-diffusion or diffusion when the

vertical-flow slope (that is, vertical convergence or

divergence) is large. This effect tends to be

strengthened by the presence of non-uniformity of the

grid. However, the effect of the latter was smaller than

that of the effect of vertical-flow slope for the typical

non-uniformity of the grid. This result implies that in

the numerical model the rising or sinking motion,

accompanied by horizontal convergence or divergence,

respectively, near the boundary, may be vulnerable to

the numerical instability due to the adverse diffusion.

And the possibility of the instability becomes large in

the case of non-uniformity of grid-size.
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