DOI QR코드

DOI QR Code

1H, 15N, and 13C Resonance Assignments of the Anti-CRISPR AcrIIA4 from Listeria monocytogenes Prophages

  • Kim, Iktae (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Nak-Kyoon (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Suh, Jeong-Yong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2018.08.10
  • Accepted : 2018.09.05
  • Published : 2018.09.20

Abstract

The CRISPR-Cas system is the adaptive immune system in bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, an endonuclease Cas9 cleaves DNA targets of phages as directed by guide RNA comprising crRNA and tracrRNA. To avoid targeting and destruction by Cas9, phages employ anti-CRISPR (Acr) proteins that act against host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of AcrIIA4 that inhibits endonuclease activity of type II-A Listeria monocytogenes Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The secondary structures of AcrIIA4 predicted by the backbone chemical shifts show an ${\alpha}{\beta}{\beta}{\beta}{\alpha}{\alpha}$ fold, which is used to determine the solution structure.

Keywords

References

  1. R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath, Science 315, 1709 (2007) https://doi.org/10.1126/science.1138140
  2. S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis, A. P. Snijders, M. J. Dickman, K. S. Makarova, E. V. Koonin, and J. van der Oost, Science 321, 960 (2008) https://doi.org/10.1126/science.1159689
  3. E. V. Koonin, K. S. Makarova, and F. Zhang, Curr. Opin. Microbiol. 37, 67 (2017) https://doi.org/10.1016/j.mib.2017.05.008
  4. W. Jiang and L. A. Marraffini, Annu. Rev. Microbiol. 69, 209 (2015) https://doi.org/10.1146/annurev-micro-091014-104441
  5. S. H. Sternberg and J. A. Doudna, Mol. Cell 568, 568 (2015)
  6. A. V. Wright, J. K. Nunez, and J. A. Doudna, Cell 164, 29 (2016) https://doi.org/10.1016/j.cell.2015.12.035
  7. J. E. Samson, A. H. Magadán, M. Sabri, and S. Moineau, Nat. Rev. Microbiol. 11, 675 (2013) https://doi.org/10.1038/nrmicro3096
  8. B. J. Rauch, M. R. Silvis, J. F. Hultquist, C. S. Waters, M. J. McGregor, N. J. Krogan, and J. Bondy-Denomy, Cell 168, 150 (2017) https://doi.org/10.1016/j.cell.2016.12.009
  9. D. Dong, M. Guo, S. Wang, Y. Zhu, S. Wang, Z. Xiong, J. Yang, Z. Xu, and Z. Huang, Nature 546, 436 (2017) https://doi.org/10.1038/nature22377
  10. H. Yang and D. J. Patel, Mol. Cell 67, 117 (2017) https://doi.org/10.1016/j.molcel.2017.05.024
  11. J. Shin, F. Jiang, J. J. Liu, N. L. Bray, B. J. Rauch, S. H. Baik, E. Nogales, J. Bondy-Denomy, J. E. Corn, and J. A. Doudna, Sci. Adv. 3, e1701620, (2017)
  12. I. Kim, M. Jeong, D. Ka, M. Han, N. K. Kim, E. Bae, and J. Y. Suh, Sci. Rep. 8, 3883 (2018) https://doi.org/10.1038/s41598-018-22177-0
  13. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
  14. D. S. Garrett, R. Powers, A. M. Gronenborn, and G. M. Clore, J. Magn. Reson. 95, 214 (1991)
  15. B. A. Johnson and R. A. Blevins, J. Biomol. NMR 4, 603 (1994) https://doi.org/10.1007/BF00404272
  16. Y. Shen, F. Delagio, G. Cornilescu, and A. Bax, J. Biomol. NMR 44, 213 (2009) https://doi.org/10.1007/s10858-009-9333-z