DOI QR코드

DOI QR Code

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms

파랑관통형 선형의 선체유기 유동소음특성에 관한 연구

  • Choi, Woen-Sug (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Shipbuilding and Marine Engineering, Koje College) ;
  • Seo, Jeong-Hwa (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Rhee, Shin-Hyung (Department of Naval Architecture and Ocean Engineering, Seoul National University)
  • 최원석 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학과) ;
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 서정화 (서울대학교 해양시스템공학연구소) ;
  • 이신형 (서울대학교 조선해양공학과)
  • Received : 2018.07.10
  • Accepted : 2018.08.28
  • Published : 2018.08.31

Abstract

As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

선박의 고속, 대형화 및 규제강화의 추세에 따라 유동소음의 중요성이 강조되고 있다. 그러나 항공, 철도 등의 공력소음 분야에서 유동소음을 설계에 반영하고 있는 것에 반해 조선해양분야에서는 고려되지 않고 있다. 본 연구에서는, 선체유기 유동소음의 해석절차를 정립하고 쇄파의 영향이 작고 선체선형에 의한 유기소음의 특성이 뚜렷한 파랑관통형 선형에 대해 소음특성을 분석하였다. 선체유기 유동소음의 주요 메커니즘인 난류경계층 내부의 복잡한 난류유동과 구조물의 유체-구조 연성적 소음원은 벽면변동압력을 이용하여 가진력을 모델링하고 파워흐름해석법을 이용하여 진동음향 응답해석을 수행하였다. 주파수 영역 및 선체부위에 따라 상의한 소음특성을 가지며 저주파수 영역에서 선형의 영향이 상대적으로 크고 유속에 비례하는 경향을 확인할 수 있었다.

Keywords

References

  1. Abshagen, J. and V. Nejedl(2014), Towed body measurements of flow noise from a turbulent boundary layer under sea conditions, The Journal of the Acoustical Society of America, Vol. 135, No. 2, pp. 637-645. https://doi.org/10.1121/1.4861238
  2. Belov, V. D., S. A. Rybak and B. D. Tartakovskii(1977), Propagation of vibrational energy in absorbing structures, Soviet Physics Acoustics-USSR, Vol. 23, No. 2, pp. 115-119.
  3. Blake, W. K.(2017), Mechanics of flow-induced sound and vibration, Volume2: Complex flow-structure interactions, Academic press.
  4. Bouthier, O. M. and R. J. Bernhard(1995), Simple models of energy flow in vibrating membranes, Journal of Sound and Vibration, Vol. 182, No. 1, pp. 129-147. https://doi.org/10.1006/jsvi.1995.0186
  5. Casarella, M. J., J. T. Shen and B. E. Bowers(1977), On the Evaluation of Axisymmetric Forebody Shapes for Delaying Laminar-Turbulent Transition, David Taylor Nval Ship R&D Center Rep. No. 77-0074.
  6. Chase, D. M.(1987), The Character of the Turbulent Wall Pressure Spectrum at Subconvective Wavenumbers and a Suggested Comprehensive Model, Journal of Sound and Vibration, Vol. 112, No. 1, pp. 125-147. https://doi.org/10.1016/S0022-460X(87)80098-6
  7. Choi, W. S., Y. Choi, S. Y. Hong, J. H. Song, H. W. Kwon and C. M. Jung(2016), Turbulence-induced noise of a submerged cylinder using a permeable FW-H method, International Journal of Naval Architecture and Ocean Engineering, Vol. 8, pp. 235-242. https://doi.org/10.1016/j.ijnaoe.2016.03.002
  8. Choi, W. S., S. Y. Hong, J. H Song, H. W. Kwon and C. M. Jung(2017), Prediction of Turbulent Boundary Layer Noise on Plate Using Energy Flow Analysis, Transactions of Korean Society of Noise and Vibration Engineering, Vol. 27, No. 5, pp. 608-615. https://doi.org/10.5050/KSNVE.2017.27.5.608
  9. Ciappi, E., S. De Rosa, F. Franco, J. L. Guyader, S. A. Hambric, R. C. K. Leung and A. D. Hanford(2018), Flinovia-Flow Induced Noise and Vibration Issues and Aspects-II, Springer.
  10. De Jong, C. A., J. Bosschers, H. Hasenpflug and T. M. Farabee(2005), Surface ship underwater radiated flow noise, Proceeding of Underwater Defense Technology, Amsterdam.
  11. Han, F., R. J. Bernhard and L. G. Mongeau(1999), Prediction of Flow-Induced Structural Vibration and Sound Radiation Using Energy Flow Analysis, Journal of Sound and Vibration, Vol. 227, No. 4, pp. 685-709. https://doi.org/10.1006/jsvi.1998.3013
  12. Kwon, H. W., S. Y. Hong and J. H. Song(2016), Energy flow models for underwater radiation noise prediction in medium-to-high-frequency ranges, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, Vol. 230 No. 2, pp. 404-416. https://doi.org/10.1177/1475090215586637
  13. Lighthill, M. J.(1952), On Sound Generated Aerodynamically, Philosophical Transactions of the Royal Socicty A, Vol. 564, pp. 564-587.
  14. Liu, Y. and A. P. Dowling(2007), Assessment of the contribution of surface roughness to airframe noise, The American Institute of Aeronautics and Astronautics Journal, Vol, 45, No. 4, pp. 855-869. https://doi.org/10.2514/1.25217
  15. Maidanik, G. and E. M. Kerwin(1966), Influence of fluid loading on the radiation from infinite plates below the critical frequency, The Journal of the Acoustical Society of America, Vol. 40, No. 5, pp. 1034-1038. https://doi.org/10.1121/1.1910184
  16. Meecham, W. C.(1965), Surface and volume sound from boundary layers. The Journal of the Acoustical Society of America, Vol. 37, No. 3, pp. 516-522. https://doi.org/10.1121/1.1909360
  17. Park, S. H. and S. H. Rhee(2012), CFD code development using open source libraries for shipbuilding and marine engineering industries. Journal of the Society of Naval Architects of Korea, Vol. 49, No. 2, pp. 151-157. https://doi.org/10.3744/SNAK.2012.49.2.151
  18. Ross, D.(2013), Mechanics of underwater noise, Elsevier.
  19. Schlichting, H. and K. Gersten(2016), Boundary-layer theory, Springer.
  20. Schultz-Grunow, F.(1941), New frictional resistance law for smooth plates, NACA-TM-986.
  21. Seo, S. H.(2005) Development of power flow finite element method for medium-to-high frequency vibration analysis of built-up structures with multi-dimensional elements, PhD Thesis, Seoul National University, Seoul, South Korea.
  22. Wang, M., J. B. Freund and S. K. Lele(2006), Computational Prediction of Flow-Generated Sound, Annual Review of Fluid Mechanics, Vol. 38, pp. 483-512. https://doi.org/10.1146/annurev.fluid.38.050304.092036