DOI QR코드

DOI QR Code

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test

  • Received : 2018.07.11
  • Accepted : 2018.08.16
  • Published : 2018.11.30

Abstract

An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and $90^{\circ}C$). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.

Keywords

Acknowledgement

Supported by : Ministry of a Trade, Industry and Energy

References

  1. M. L. Perry and T. F. Fuller, J. Electrochem. Soc., 149(7), S59 (2002). https://doi.org/10.1149/1.1488651
  2. J. Kurtz, H. Dinh, G. Saur and C. Ainscough, DOE 2017 Annual Merit Review, Washington, DC, June 8 (2017).
  3. M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery and J. M. Fenton, Chem. Rev., 112, 6075 (2012). https://doi.org/10.1021/cr200424d
  4. D. P. Wilkinson and J. St-Pierre, Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, Wiley, Chichester, England, 611 (2003).
  5. S. D. Knights, K. M. Colbow, J. St-Pierre and D. P. Wilkinson, J. Power Sources, 127, 127 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Z. Luo, D. Li, H. Tang, M. Pan and R. Ruan, Int. J. Hydrogen Energy, 31, 1838 (2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. A. Pozio, R. F. Silva, M. D. Francesco and L. Giorgi, Electrochim. Acta, 48, 1543 (2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. S. Chen, H. A. Gasteiger, K. Hayakawa, T. Tada and Y. Shao-Horn, J. Electrochem. Soc., 157, A82 (2010). https://doi.org/10.1149/1.3258275
  9. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman and M. E. Tisack, J. Power Sources, 131, 41 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. A. Collier, H. Wang, X. Yaun, J. Zhang and D. P. Wilison, Int. J. Hydrogen Energy, 31, 1838 (2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  11. DOE Fuel Cell Technologies Office, 2016 Multi-Year Research, Development and Demonstration Plan, Protocols for Testing PEM Fuel Cells and Fuel Cell Components, Page 3.4-46 (2016).
  12. H. Wang, M. Tang and D. Pan, Int. J. Hydrogen Energy, 33(9), 2283 (2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  13. T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi and A. Takaka, J. Power Sources, 158(2), 1222 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  14. J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo and M. Brundage, Fuel Cells, 5(2), 302 (2005). https://doi.org/10.1002/fuce.200400050
  15. B. P. Pearman, N. Mohajeri, D. K. Slattery, M. D. Hampton, S. Seal and D. A. Cullen, Polym. Degrad. Stab., 98(9), 1766 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  16. J. Hao, Y. Jiang, X. Gao, F. Xie, Z. Shao and B. Yi, J. Membr. Sci., 522(15), 23 (2017). https://doi.org/10.1016/j.memsci.2016.09.010
  17. H. Zhu, S. Pei, J. Tang, H. Li, L. Wang, W. Yuan and Y. Zhang, J. Membr. Sci., 432, 66 (2013). https://doi.org/10.1016/j.memsci.2012.12.050
  18. Z. Chang, H. Yan, J. Tian, H. Pan and H. Pu, Polym. Degrad. Stab., 138, 98 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.02.014
  19. W. Liu, K. Ruth and G. Rusch, J. New Mater. Mater. Electrochem. Syst., 4, 227 (2001).
  20. B. Kieitz, J. Kolde, S. Priester, C. Baczkwski and M. Crum, ECS Trans., 41(1), 1521 (2011).
  21. J. J. Jeong, J. H. Jeong, S. H. Kim, B. K. Ahn, J. J. Ko and K. P. Park, Korean Chem. Eng. Res., 52(4), 425 (2014). https://doi.org/10.9713/kcer.2014.52.4.425
  22. J. Qiao, M. Saito, K. Hayamizu and T. Okada, J. Electrochem. Soc., 153(6), A967 (2006). https://doi.org/10.1149/1.2186768
  23. E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto, Electrochem., Solid-State Lett., 7(7), A209 (2004). https://doi.org/10.1149/1.1739314
  24. J. H. Song, S. H. Kim, B. K. Ahn, J. J. Ko and K. P. Park, Korean Chem. Eng. Res., 51(1), 68 (2013). https://doi.org/10.9713/kcer.2013.51.1.68
  25. Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun and Q. Xin, J. Membr. Sci., 233, 39 (2004). https://doi.org/10.1016/j.memsci.2003.12.008
  26. M. Ludvigsson, J. Lindgren and J. Tegenfeldt, Electrochim. Acta, 45(14), 2267 (2000). https://doi.org/10.1016/S0013-4686(99)00438-7
  27. F. D. Cons, ECS Trans., 16(2), 235 (2008).
  28. M. Danilczuk, F. D. Cons and S. Schlick, J. Phys. Chem., B, 113, 8031 (2009). https://doi.org/10.1021/jp901597f
  29. E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto, Electrochem., Solid-State Lett., 7, 145 (2004). https://doi.org/10.1149/1.1738554
  30. N. Ohguri, A. Y. Nosaka and Y. Nosaka, J. Power Sources, 195, 4647 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.010
  31. W. Liu and D. Zuckerbrod, J. Electrochem. Soc., 152, A1165 (2005). https://doi.org/10.1149/1.1904988
  32. S. Kundu, M. W. Fowler, L. C. Simon, R. Abouatallah and N. Beydokhti, J. Power Sources, 183, 619 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.074
  33. L. Zhang and S. Mukerjee, J. Electrochem. Soc., 153, A1062 (2006). https://doi.org/10.1149/1.2180715
  34. S. R. Samms, S. Wasmus and R. F. Savinell, J. Electrochem. Soc., 143(5), 1498 (1996). https://doi.org/10.1149/1.1836669
  35. S. H. Almeida and Y. Kawano, J. Therm. Anal. Calorim., 58, 569 (1999). https://doi.org/10.1023/A:1010196226309
  36. H. J. Lee, M. K. Cho and Y. Y. Jo, Polym. Degrad. Stab., 97, 1010 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.03.016
  37. Q. Deng, C. A. Wilkie, R. B. Moore and K. A. Mauritz, J. Appl. Polym. Sci., 68, 747 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980502)68:5<747::AID-APP7>3.0.CO;2-O

Cited by

  1. 고분자전해질 연료전지에서 고분자막을 통한 물의 이동 vol.57, pp.3, 2019, https://doi.org/10.9713/kcer.2019.57.3.338
  2. 정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가 vol.57, pp.3, 2018, https://doi.org/10.9713/kcer.2019.57.3.344
  3. Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교 vol.57, pp.6, 2018, https://doi.org/10.9713/kcer.2019.57.6.768
  4. Metal hydroxide hybridized tungsten carbide nanorod arrays for enhancing hydrogen evolution in alkaline media vol.509, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2019.144912
  5. 고분자전해질 연료전지 고분자막의 특성 및 성능 비교 vol.58, pp.2, 2020, https://doi.org/10.9713/kcer.2020.58.2.171
  6. PEMFC의 고분자막에서 지지체가 고분자전해질 막 성능 및 전기화학적 내구성에 미치는 영향 vol.58, pp.4, 2018, https://doi.org/10.9713/kcer.2020.58.4.524
  7. 고분자연료전지에 사용되는 e-PTFE 지지체의 펜톤반응 후 화학적 열화 vol.58, pp.4, 2018, https://doi.org/10.9713/kcer.2020.58.4.536
  8. Ionic Mobility in Ion-Exchange Membranes vol.11, pp.3, 2018, https://doi.org/10.3390/membranes11030198
  9. PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구 vol.59, pp.1, 2018, https://doi.org/10.9713/kcer.2021.59.1.49
  10. Voltammetric and galvanostatic methods for measuring hydrogen crossover in fuel cell vol.25, pp.1, 2018, https://doi.org/10.1016/j.isci.2021.103576