DOI QR코드

DOI QR Code

Temporal and Spatial Distribution of Microbial Community and Odor Compounds in the Bukhan River System

북한강 수계 미소생물 군집 및 이취미 물질의 시공간적 분포 특성

  • Byun, Jeong-Hwan (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Yu, Mina (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, Eunjeong (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Yoo, Soon-Ju (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Baik-Ho (Department of Life Science, Hanyang University) ;
  • Byun, Myeong-Seop (Han River Environment Research Center, National Institute of Environmental Research)
  • 변정환 (국립환경과학원 한강물환경연구소) ;
  • 유미나 (국립환경과학원 한강물환경연구소) ;
  • 이은정 (국립환경과학원 한강물환경연구소) ;
  • 유순주 (국립환경과학원 한강물환경연구소) ;
  • 김백호 (한양대학교 생명과학과) ;
  • 변명섭 (국립환경과학원 한강물환경연구소)
  • Received : 2018.10.29
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

Odor compounds (geosmin, 2-MIB) have been causing problems in the Bukhan River system, but the causative organisms have not been clearly identified. To evaluate the relationship between dynamics of microbial community and odor compounds, two times monthly monitoring of water quality and microbial community from the three serial lakes (Lake Uiam, Lake Cheongpyeong and Lake Paldang) in the Bukhan River system were conducted from April to October 2017. The odor compounds were analyzed by HS-SPME analysis method using GC/MS. Bacteria communities were identified at the class level by NGS analysis. Actinobacteria and Betaproteobacteria were dominant taxon in bacteria community of three serial lakes. In the case of phytoplankton communities showed that seasonal changes by Bacillariophyceae and Cryptophyceae in spring, Cyanobacteria in summer, and Bacillariophyceae and Cryptophyceae in autumn. Dominant species was Dolichospermum (=Anabaena), Microcystis and Pseudanabaena in Bukhan River system in all study period. At the same time the odors geosmin and 2-MIB were also detected at high concentration. There is a significant positive correlation between proportion of Actinobaceria and 2-MIB concentration (r=0.491, p<0.01). In addition, proportion of cyanobacteria showed a significant correlation of geosmin (r=0.381, p<0.05) and 2-MIB (r=0.386, p<0.05) concentration. In this study, odor compounds in the Bukhan River system are considered to be a direct relationship between with Actinobacteria and cyanobacteria.

본 연구는 2017년 4월부터 10월까지 북한강 수계 3개의 연속댐(의암호(UA), 청평호(CP), 팔당호(PD))의 미소생물 군집과 이취미 농도와 관계를 알아보기 위해 환경요인, 이 취미 물질, 미소생물 군집 등을 조사하였다. 3개 저수지의 박테리아 군집은 주로 Actinobacteria와 Betaproteobacteria가 우점 분류군으로 나타났으며, 계절성은 나타나지 않았다. 식물플랑크톤 군집은 봄철, 규조류 및 은편모조류 여름철 남조류, 가을철 규조류 및 은편모조류 순서로 우점하는 계절성을 보였으며, 북한강 수계에서 출현한 남조류는 Dolichospermum spp., Microcystis aeruginosa, Pseudanabaena spp. 속이 우점 출현하였다. 북한강 수계에 출현한 미소생물 중 이취미 물질을 발생하는 분류군은 Actinobacteria와 남조 Anabaena, Pseudanabaena 속 등이며, 이취미 물질인 Geosmin과 2-MIB가 높게 나타났을 때, 높은 현존량으로 출현하였다. 미소생물과 이취미 물질의 상관관계는 Actinobacteria의 경우 2-MIB (r=0.491, p<0.01)와 유의한 상관성을 나타냈으며, 남조류의 경우 geosmin (r=0.381, p<0.05), 2-MIB (r=0.386, p<0.05)와 유의한 상관성을 나타냈다. 따라서, 북한강 수계에서 나타나는 이취미 물질은 Actinobacteria 및 남조류의 출현과 직접적인 관계가 있을 것으로 사료되며, 남조류 미출현 시 발생하는 높은 농도의 이취미 물질은 Actinobacteria가 생성하는 것으로 판단된다.

Keywords

Acknowledgement

Grant : 남조류 기원 이취미 발생에 대한 분자생물학적 특성

Supported by : 한강물환경연구소

References

  1. Auffret, M., A. Pilote, E. Proulx, D. Proulx, G. Vandenberg and R. 2011. Villemur. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems. Water Research 45: 6753-6762. https://doi.org/10.1016/j.watres.2011.10.020
  2. Bai, L., C. Cao, C. Wang, H. Xu, H. Zhang, V.H. Slaveykova and H. Jiang. 2017. Toward Quantitative Understanding of the Bioavailability of Dissolved Organic Matter in Freshwater Lke during Cyanobacteria Blooming. Environmental Science & Technology 51: 6018-6026. https://doi.org/10.1021/acs.est.7b00826
  3. Bentley, R. and R. Maganathan. 1981. Geosmin and methylisoborneol biosynthesis in stretomyces; evidence for an isoprenoid pathway and its absence in non-differentiating isolates. FEBS Letters 125: 220-222. https://doi.org/10.1016/0014-5793(81)80723-5
  4. Betnardet, J.F., P. Segers, M. Vancanneyt, F. Berthe, K. Kersters and P. Vandamme. 1996. Cutting a Gordian Knot: Emended Classification and Description of the Genus Flavobacterium, Emended Description of the Family Flavobacteriaceae, and Proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). International Journal of Systematic and Evolutionary Microbiology 46: 128-148.
  5. Byun, J.H., I.H. Cho, S.J. Hwang, M.H. Park, M.S. Byeon and B.H. Kim. 2014. Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea. Korean Journal of Ecology and Environment 47(2): 116-126. https://doi.org/10.11614/KSL.2014.47.2.116
  6. Byun, J.H., S.J. Hwang, B.H. Kim, J.R. Park, J.K. Lee and B.J. Lim. 2015. Relationship Between a Dense Population of Cyanobacteria and Odorous Compounds in the North Han River System in 2014 and 2015. Korean Journal of Ecology and Environment 48(4): 263-271. https://doi.org/10.11614/KSL.2015.48.4.263
  7. Gerber, N.N. and H.A. Lechevalier. 1965. Geosmin and earthy-smelling substances isolated from actinomycetes. Applied Microbiology 13: 935-938.
  8. Ha, K.J., K.S. Yun, J.G. Jhun and C.K. Park. 2005. Definition of onset/retreat and intensity of changma during the boreal summer monsoon season. Journal of the Korean Meteorological Society 41(6): 927-942.
  9. Han, M.S., Y.Y. Auh, J.K. Ryu, K.I. Yoo and Y.K. Choi. 1995. Ecological Studies on Pal'tang River-reservoir System in Korea 2. Change in Phytoplankton Community Structure. Korean Journal of Limnological Society 28(3); 335-344.
  10. Hayes, K.P. and M.D. Burch. 1989. Odorous compounds associated with algal blooms in South Australian waters. Water Research 23: 115-121. https://doi.org/10.1016/0043-1354(89)90069-9
  11. Izaguirre, G and W.D. Taylor 1998. A pseudanabaena Species from Castaic Lake, California, That Produces 2-methylisoborneol. Water Research 32(5):1673-1677. https://doi.org/10.1016/S0043-1354(97)00379-5
  12. Izaguirre, G., C.J. Hwang, S.W. Krasner and M.J. McGuire. 1982. Geosmin and 2-methylisoborneol from Cyanobacteria in Three Water Supply Systems. Applied and Environmental Microbiology 43: 708-714.
  13. Jiang, J., X. He and D.E. Cane. 2007. Biosynthesis of the earthy odorant geosmin by a biofunctional Streptomyces coelicolor enzyme. Nature Chemical Biology 3(11): 711-715 https://doi.org/10.1038/nchembio.2007.29
  14. Juttner, F. and S.B. Watson. 2007. Biochemical and Ecological Control of Geosmin and 2-methylisoborneol in Source Waters, Applied and Environmental Microbiology 73(4): 4395-4406. https://doi.org/10.1128/AEM.02250-06
  15. Kang, J.Y., J. Chun and R. Rippka. 2013. Flavobacterium Aciduliphilum sp. nov., Isolated from Freshwater, and Emended Description of the Genus Flavobacterium. International Journal of Systematic and Evolutionary Microbiology 63: 1633-1638. https://doi.org/10.1099/ijs.0.044495-0
  16. Kim, Y.J. 1996. Ecological Study of Phytoplankton Community and Trophic States Using Indicators in Lake Paltang. Korean Journal of Limnological Society 19(4): 323-345.
  17. Klausen, C., M.H. Nicolaisen, B.W. Strobel, F. Warnecke, J.L. Nielsen and N.O.G. Jorgensen. 2005. Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds. FEMS Micobiol Ecology 52: 265-278. https://doi.org/10.1016/j.femsec.2004.11.015
  18. Koksal, M., W.K.W. Chou, D.E. Cane and D.W. Christinason. 2012. Structure of 2-Methylisoborneol synthase from Streptomyces coelicolor and implications for the cyclization of a non-canonical C-methylated monoterpenoid substrate. Biochemistry 51(14): 3011-3020. https://doi.org/10.1021/bi201827a
  19. Lawton, L.A. and G.A. Codd. 1991. Cyanobacteria (blue green algal) Toxins and Their Significance in U.K. and European Waters. Journal of the Institution of Water & Environmental Management 5: 460-465. https://doi.org/10.1111/j.1747-6593.1991.tb00643.x
  20. Lee, J.E., J.G. Park and E.J. Kim. 2002. Trophic States and Phytoplankton Compositions of Dam Lakes in Korea. Algae 17(4): 275-281. https://doi.org/10.4490/ALGAE.2002.17.4.275
  21. Louati, I., N. Pascault, D. Debroas, C. Bernard, J.F. Humbert and J. Leloup. 2015. Structural Diversity of Bacterial Communities Associated with Bloom-Forming Freshwater Cyanobacteria Differs Accoding to the Cyanobacterial Genus. PLOS ONE 10(11): e0140614. https://doi.org/10.1371/journal.pone.0140614
  22. Ministry of Environment (MOE). 2011. Drinking water quality monitoring guideline.
  23. Miwa, M. and K. Morizane. 1988. Effect of Chelating Agents on the Growth of Blue-Green Algae and the Relese of Geosmin. Water Science and Technology 20(8): 197-203.
  24. National Institute of Environmental Research (NIER). 2014. Physiological and Ecological Characteristics of Algae in the Lake Paldang (I), National Institute of Environmental Research, pp. 62.
  25. Niemi, R.M., I. Heiskanen, R. Heine and J. Rapala. 2009. Previously Uncultured ${\beta}$-Proteobacteria Dominate in Biologically Active Granular Activated Carbon (BAC) Filters. Water Research 43: 5075-5086. https://doi.org/10.1016/j.watres.2009.08.037
  26. Newton, R.J., S.E. Jones, A. Eiler, K.D. McMahon and S. Bertilsson. 2011. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiology and Molecular Biology Reviews 75(1): 14-49. https://doi.org/10.1128/MMBR.00028-10
  27. Park, H.K. and W.H. Jheong. 2003. Long-term changes of algal growth in Lake Paldang. Journal of Korean Society on Water Quailty 19(6): 673-684.
  28. Park, H.K., M.S. Byeon, E.K. Kim, H.J. Lee, M.J. Chun and D.I. Jung. 2004. Water Quality and Phytoplankton Distribution Pattern in Upper Inflow Rivers of Lake Paldang. Journal of Korean Society on Water Quality 20(6): 488-498.
  29. Park, J.E. 2006. A modeling study for the impact prediction of serial impoundments on downstream temperature distribution. Master thesis, Ewha Womans University, Korea.
  30. Park, J.H., B.L. Moon and O.M. Lee. 2006. The Phytoplankton Composition and Trophic States at Several Lake of Suwon- si, Korea. Algae 21(2): 217-228. https://doi.org/10.4490/ALGAE.2006.21.2.217
  31. Parveen, B., J.P. Reveilliez, I. Mary, V. Ravet, G. Bronner, J.F. Mangot, I. Domaizon and D. Debroas. 2011. Diversity and Dynamics of Free-ling and Particle-associated Betaproteobacteria and Actinobacteria in Relation to Phytoplankton and Zoolpankton Communities. FEMS Microbiology Ecology 77: 461-476. https://doi.org/10.1111/j.1574-6941.2011.01130.x
  32. Peterson, H.G., S.E. Hrudey, I.A. Cantin, T.R. Perley and S.L. Kenefick. 1995. Physiological Toxicity, Cell Membrane Damage and the Release of Dissolved Organic Carbon and Geosmin by Aphanizomenon flos-aquae after Exposure to Water Treatment Chemicals. Water Research 29(6): 1515-1523. https://doi.org/10.1016/0043-1354(94)00300-V
  33. Saadoun, I.M.K., K.K. Schrader and W.T. Blevins. 2001. Environmental and Nutritionalfactors Affecting Geosmin Synthesis by Anabaena sp. Water Research 35: 1209-1218. https://doi.org/10.1016/S0043-1354(00)00381-X
  34. Shin, H.J. and O.M. Lee. 2014. The Dynamic of Phytoplankton Communities and the Biological Water Quality Assessment at Three Artificial Weirs in Downstream of Namhan-river. Journal of Korean Society on Water Environment 30(6): 612-621. https://doi.org/10.15681/KSWE.2014.30.6.612
  35. Suffet, I.M., J. Mallevialle and E. Kawczynski. 1995. Advances in Taste-And-Odor Treatment and Control, American Water Works Association Research Foundation in Denver, Colorado, pp. 385.
  36. Sugiura, N., O. Nishimura, Y. Inamor, T. Ouchiyama and R. Sudo. 1997. Grazing characteristics of musty-odor-compound-producing Phormidium tenue by a microflagellate, Monas guttula. Water Research 31(11): 2792-2796. https://doi.org/10.1016/S0043-1354(97)00115-2
  37. Sugiura, N. and K. Nakano. 2000. Causative Microorganisms for musty Odor occurrence in the Eutrophic Lake Kasumigaura. Hydrobiologia 434(1-3):145-150. https://doi.org/10.1023/A:1004000511610
  38. Tsujimura, S. and T. Okubo. 2003. Development of Anabaena Blooms in a Small Reservoir with Dense Sediment Akinete Population, with Special Reference to Temperature and Irradiance. Journal of Plankton Research 25: 1059-1067. https://doi.org/10.1093/plankt/25.9.1059
  39. Wang, S.H., A.R. Dzialowski, J.O. Meyer, F. de Noyelles, N.C. Lim, W.W. Spotts and D.G. Huggins. 2005. Relationships Between Cyanobacterial Production and the Physical and Chemical Properties of a Midwestern Reservoir, USA. Hydrobiologia 541: 29-43. https://doi.org/10.1007/s10750-004-4665-x
  40. Ward, J.V. and J.A. Stanford. 1983. The serial Discontinuity Concept of Lotic Ecosystems, p. 29-42. In: Dynamics of Lotic Ecosystems (Fontaine, T.D. and S.M. Bartell, eds.). Ann Arbor Science, Ann Arbor, USA.
  41. Whelton, A.J. and A.M. Dietrich. 2004. Relationship Between Intensity Concentration and Temperature for Drinking Water Odorants. Water Research 38: 1604-1614. https://doi.org/10.1016/j.watres.2003.11.036
  42. You, K.A., M.S. Byeon, S.J. Youn, S.J. Hwang and D.H. Rhew. 2013. Growth Characteristics of Blue-green Algae (Anabaena spiroides) Causing Tastes and Odors in the North-Han River, Korea. Korean Journal of Ecology and Environment 46: 135-144. https://doi.org/10.11614/KSL.2013.46.1.135
  43. Zimba, P.V., C.C. Grimm, C.P. Dionigiand and C.R. Weirich. 2001. Phytoplankton Community Structure, Biomass, and Off‐flavor: Pond Size Relationships in Louisiana Catfish Ponds. Journal of the World Aquaculture Society 32(1): 96-104. https://doi.org/10.1111/j.1749-7345.2001.tb00927.x
  44. Zuo, Y., L. Li, T. Zhang, L. Zheng, G. Dai, L. Liu and L. Song. 2010. Contribution of Streptomyces in sediment to earthy odor in the overlying water in Xionghe Reservoir, China. Water Research 44: 6085-6094. https://doi.org/10.1016/j.watres.2010.08.001