INEQUALITIES FOR QUANTUM f-DIVERGENCE OF CONVEX FUNCTIONS AND MATRICES

Silvestru Sever Dragomir

Abstract

Some inequalities for quantum f-divergence of matrices are obtained. It is shown that for normalised convex functions it is nonnegative. Some upper bounds for quantum f-divergence in terms of variational and χ^{2}-distance are provided. Applications for some classes of divergence measures such as Umegaki and Tsallis relative entropies are also given.

1. Introduction

Let (X, \mathcal{A}) be a measurable space satisfying $|\mathcal{A}|>2$ and μ be a σ finite measure on (X, \mathcal{A}). Let \mathcal{P} be the set of all probability measures on (X, \mathcal{A}) which are absolutely continuous with respect to μ. For $P, Q \in \mathcal{P}$, let $p=\frac{d P}{d \mu}$ and $q=\frac{d Q}{d \mu}$ denote the Radon-Nikodym derivatives of P and Q with respect to μ.

Two probability measures $P, Q \in \mathcal{P}$ are said to be orthogonal and we denote this by $Q \perp P$ if

$$
P(\{q=0\})=Q(\{p=0\})=1 .
$$

Let $f:[0, \infty) \rightarrow(-\infty, \infty]$ be a convex function that is continuous at 0 , i.e., $f(0)=\lim _{u \downarrow 0} f(u)$.

Received February 15, 2018. Revised August 12, 2018. Accepted August 14, 2018. 2010 Mathematics Subject Classification: 47A63, 47A99.
Key words and phrases: Selfadjoint bounded linear operators, Functions of matrices, Trace of matrices, Quantum divergence measures, Umegaki and Tsallis relative entropies.
(c) The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

In 1963, I. Csiszár [3] introduced the concept of f-divergence as follows.

Definition 1. Let $P, Q \in \mathcal{P}$. Then

$$
\begin{equation*}
I_{f}(Q, P)=\int_{X} p(x) f\left[\frac{q(x)}{p(x)}\right] d \mu(x) \tag{1.1}
\end{equation*}
$$

is called the f-divergence of the probability distributions Q and P.
Remark 1. Observe that, the integrand in the formula (1.1) is undefined when $p(x)=0$. The way to overcome this problem is to postulate for f as above that

$$
\begin{equation*}
0 f\left[\frac{q(x)}{0}\right]=q(x) \lim _{u \downarrow 0}\left[u f\left(\frac{1}{u}\right)\right], x \in X . \tag{1.2}
\end{equation*}
$$

We now give some examples of f-divergences that are well-known and often used in the literature (see also [2]).
1.1. The Class of χ^{α}-Divergences. The f-divergences of this class, which is generated by the function $\chi^{\alpha}, \alpha \in[1, \infty)$, defined by

$$
\chi^{\alpha}(u)=|u-1|^{\alpha}, \quad u \in[0, \infty)
$$

have the form

$$
\begin{equation*}
I_{f}(Q, P)=\int_{X} p\left|\frac{q}{p}-1\right|^{\alpha} d \mu=\int_{X} p^{1-\alpha}|q-p|^{\alpha} d \mu \tag{1.3}
\end{equation*}
$$

From this class only the parameter $\alpha=1$ provides a distance in the topological sense, namely the total variation distance $V(Q, P)=\int_{X}|q-p| d \mu$. The most prominent special case of this class is, however, Karl Pearson's χ^{2}-divergence

$$
\chi^{2}(Q, P)=\int_{X} \frac{q^{2}}{p} d \mu-1
$$

that is obtained for $\alpha=2$.
1.2. Dichotomy Class. From this class, generated by the function $f_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$

$$
f_{\alpha}(u)= \begin{cases}u-1-\ln u & \text { for } \alpha=0 ; \\ \frac{1}{\alpha(1-\alpha)}\left[\alpha u+1-\alpha-u^{\alpha}\right] & \text { for } \alpha \in \mathbb{R} \backslash\{0,1\} ; \\ 1-u+u \ln u & \text { for } \alpha=1 ;\end{cases}
$$

only the parameter $\alpha=\frac{1}{2}\left(f_{\frac{1}{2}}(u)=2(\sqrt{u}-1)^{2}\right)$ provides a distance, namely, the Hellinger distance

$$
H(Q, P)=\left[\int_{X}(\sqrt{q}-\sqrt{p})^{2} d \mu\right]^{\frac{1}{2}}
$$

Another important divergence is the Kullback-Leibler divergence obtained for $\alpha=1$,

$$
K L(Q, P)=\int_{X} q \ln \left(\frac{q}{p}\right) d \mu
$$

1.3. Matsushita's Divergences. The elements of this class, which is generated by the function $\varphi_{\alpha}, \alpha \in(0,1]$ given by

$$
\varphi_{\alpha}(u):=\left|1-u^{\alpha}\right|^{\frac{1}{\alpha}}, \quad u \in[0, \infty)
$$

are prototypes of metric divergences, providing the distances $\left[I_{\varphi_{\alpha}}(Q, P)\right]^{\alpha}$.
1.4. Puri-Vincze Divergences. This class is generated by the functions $\Phi_{\alpha}, \alpha \in[1, \infty)$ given by

$$
\Phi_{\alpha}(u):=\frac{|1-u|^{\alpha}}{(u+1)^{\alpha-1}}, \quad u \in[0, \infty)
$$

It has been shown in $[19]$ that this class provides the distances $\left[I_{\Phi_{\alpha}}(Q, P)\right]^{\frac{1}{\alpha}}$.
1.5. Divergences of Arimoto-type. This class is generated by the functions
$\Psi_{\alpha}(u):= \begin{cases}\frac{\alpha}{\alpha-1}\left[\left(1+u^{\alpha}\right)^{\frac{1}{\alpha}}-2^{\frac{1}{\alpha}-1}(1+u)\right] & \text { for } \alpha \in(0, \infty) \backslash\{1\} ; \\ (1+u) \ln 2+u \ln u-(1+u) \ln (1+u) & \text { for } \alpha=1 ; \\ \frac{1}{2}|1-u| & \text { for } \alpha=\infty .\end{cases}$
It has been shown in [21] that this class provides the distances $\left[I_{\Psi_{\alpha}}(Q, P)\right]^{\min \left(\alpha, \frac{1}{\alpha}\right)}$ for $\alpha \in(0, \infty)$ and $\frac{1}{2} V(Q, P)$ for $\alpha=\infty$.

For f continuous convex on $[0, \infty)$ we obtain the $*$-conjugate function of f by

$$
f^{*}(u)=u f\left(\frac{1}{u}\right), \quad u \in(0, \infty)
$$

and

$$
f^{*}(0)=\lim _{u \downarrow 0} f^{*}(u) .
$$

It is also known that if f is continuous convex on $[0, \infty)$ then so is f^{*}.
The following two theorems contain the most basic properties of f divergences. For their proofs we refer the reader to Chapter 1 of [20] (see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, f_{1} be continuous convex on $[0, \infty)$. We have

$$
I_{f_{1}}(Q, P)=I_{f}(Q, P),
$$

for all $P, Q \in \mathcal{P}$ if and only if there exists a constant $c \in \mathbb{R}$ such that

$$
f_{1}(u)=f(u)+c(u-1),
$$

for any $u \in[0, \infty)$.
Theorem 2 (Range of Values Theorem). Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function on $[0, \infty)$.

For any $P, Q \in \mathcal{P}$, we have the double inequality

$$
\begin{equation*}
f(1) \leq I_{f}(Q, P) \leq f(0)+f^{*}(0) . \tag{1.4}
\end{equation*}
$$

(i) If $P=Q$, then the equality holds in the first part of (1.4).

If f is strictly convex at 1 , then the equality holds in the first part of (1.4) if and only if $P=Q$;
(ii) If $Q \perp P$, then the equality holds in the second part of (1.4).

If $f(0)+f^{*}(0)<\infty$, then equality holds in the second part of (1.4) if and only if $Q \perp P$.

The following result is a refinement of the second inequality in Theorem 2 (see [2, Theorem 3]).

Theorem 3. Let f be a continuous convex function on $[0, \infty)$ with $f(1)=0\left(f\right.$ is normalised) and $f(0)+f^{*}(0)<\infty$. Then

$$
\begin{equation*}
0 \leq I_{f}(Q, P) \leq \frac{1}{2}\left[f(0)+f^{*}(0)\right] V(Q, P) \tag{1.5}
\end{equation*}
$$

for any $Q, P \in \mathcal{P}$.

For other inequalities for f-divergence see [1], [5]- [15].
Motivated by the above results, in this paper we obtain some new inequalities for quantum f-divergence of matrices. It is shown that for normalised convex functions it is nonnegative. Some upper bounds for quantum f-divergence in terms of variational and χ^{2}-distance are provided. Applications for some classes of divergence measures such as Umegaki and Tsallis relative entropies are also given.

2. Quantum f-Divergence

Quasi-entropy was introduced by Petz in 1985, [22] as the quantum generalization of Csiszár's f-divergence in the setting of matrices or von Neumann algebras. The important special case was the relative entropy of Umegaki and Araki.

In what follows some inequalities for the quantum f-divergence of convex functions in the finite dimensional setting are provided.

Let \mathcal{M} denotes the algebra of all $n \times n$ matrices with complex entries and \mathcal{M}^{+}the subclass of all positive matrices.

On complex Hilbert space $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{2}\right)$, where the Hilbert-Schmidt inner product is defined by

$$
\langle U, V\rangle_{2}:=\operatorname{tr}\left(V^{*} U\right), U, V \in \mathcal{M},
$$

for $A, B \in \mathcal{M}^{+}$consider the operators $\mathfrak{L}_{A}: \mathcal{M} \rightarrow \mathcal{M}$ and $\mathfrak{R}_{B}: \mathcal{M} \rightarrow \mathcal{M}$ defined by

$$
\mathfrak{L}_{A} T:=A T \text { and } \mathfrak{R}_{B} T:=T B .
$$

We observe that they are well defined and since

$$
\left\langle\mathfrak{L}_{A} T, T\right\rangle_{2}=\langle A T, T\rangle_{2}=\operatorname{tr}\left(T^{*} A T\right)=\operatorname{tr}\left(\left|T^{*}\right|^{2} A\right) \geq 0
$$

and

$$
\left\langle\mathfrak{\Re}_{B} T, T\right\rangle_{2}=\langle T B, T\rangle_{2}=\operatorname{tr}\left(T^{*} T B\right)=\operatorname{tr}\left(|T|^{2} B\right) \geq 0
$$

for any $T \in \mathcal{M}$, they are also positive in the operator order of $\mathcal{B}(\mathcal{M})$, the Banach algebra of all bounded operators on \mathcal{M} with the norm $\|\cdot\|_{2}$ where $\|T\|_{2}=\operatorname{tr}\left(|T|^{2}\right), T \in \mathcal{M}$.

Since $\operatorname{tr}\left(\left|X^{*}\right|^{2}\right)=\operatorname{tr}\left(|X|^{2}\right)$ for any $X \in \mathcal{M}$, then also

$$
\begin{aligned}
\operatorname{tr}\left(T^{*} A T\right) & =\operatorname{tr}\left(T^{*} A^{1 / 2} A^{1 / 2} T\right)=\operatorname{tr}\left(\left(A^{1 / 2} T\right)^{*} A^{1 / 2} T\right) \\
& =\operatorname{tr}\left(\left|A^{1 / 2} T\right|^{2}\right)=\operatorname{tr}\left(\left|\left(A^{1 / 2} T\right)^{*}\right|^{2}\right)=\operatorname{tr}\left(\left|T^{*} A^{1 / 2}\right|^{2}\right)
\end{aligned}
$$

for $A \geq 0$ and $T \in \mathcal{M}$.
We observe that \mathfrak{L}_{A} and \mathfrak{R}_{B} are commutative, therefore the product $\mathfrak{L}_{A} \mathfrak{R}_{B}$ is a selfadjoint positive operator in $\mathcal{B}(\mathcal{M})$ for any positive matrices $A, B \in \mathcal{M}^{+}$.

For $A, B \in \mathcal{M}^{+}$with B invertible, we define the Araki transform $\mathfrak{A}_{A, B}: \mathcal{M} \rightarrow \mathcal{M}$ by $\mathfrak{A}_{A, B}:=\mathfrak{L}_{A} \mathfrak{R}_{B^{-1}}$. We observe that for $T \in \mathcal{M}$ we have $\mathfrak{A}_{A, B} T=A T B^{-1}$ and

$$
\left\langle\mathfrak{A}_{A, B} T, T\right\rangle_{2}=\left\langle A T B^{-1}, T\right\rangle_{2}=\operatorname{tr}\left(T^{*} A T B^{-1}\right) .
$$

Observe also, by the properties of trace, that

$$
\begin{aligned}
\operatorname{tr}\left(T^{*} A T B^{-1}\right) & =\operatorname{tr}\left(B^{-1 / 2} T^{*} A^{1 / 2} A^{1 / 2} T B^{-1 / 2}\right) \\
& =\operatorname{tr}\left(\left(A^{1 / 2} T B^{-1 / 2}\right)^{*}\left(A^{1 / 2} T B^{-1 / 2}\right)\right)=\operatorname{tr}\left(\left|A^{1 / 2} T B^{-1 / 2}\right|^{2}\right)
\end{aligned}
$$

giving that

$$
\begin{equation*}
\left\langle\mathfrak{A}_{A, B} T, T\right\rangle_{2}=\operatorname{tr}\left(\left|A^{1 / 2} T B^{-1 / 2}\right|^{2}\right) \geq 0 \tag{2.1}
\end{equation*}
$$

for any $T \in \mathcal{M}$.
We observe that, by the definition of operator order and by (2.1) we have $r 1_{\mathcal{M}} \leq \mathfrak{A}_{A, B} \leq R 1_{\mathcal{M}}$ for some $R \geq r \geq 0$ if and only if

$$
\begin{equation*}
r \operatorname{tr}\left(|T|^{2}\right) \leq \operatorname{tr}\left(\left|A^{1 / 2} T B^{-1 / 2}\right|^{2}\right) \leq R \operatorname{tr}\left(|T|^{2}\right) \tag{2.2}
\end{equation*}
$$

for any $T \in \mathcal{M}$.
We also notice that a sufficient condition for (2.2) to hold is that the following inequality in the operator order of \mathcal{M} is satisfied

$$
\begin{equation*}
r|T|^{2} \leq\left|A^{1 / 2} T B^{-1 / 2}\right|^{2} \leq R|T|^{2} \tag{2.3}
\end{equation*}
$$

for any $T \in \mathcal{B}_{2}(H)$.
Let U be a selfadjoint linear operator on a complex Hilbert space $(K ;\langle\cdot, \cdot\rangle)$. The Gelfand map establishes a $*$-isometrically isomorphism Φ between the set $C(\operatorname{Sp}(U))$ of all continuous functions defined on the spectrum of U, denoted $\operatorname{Sp}(U)$, and the C^{*}-algebra $C^{*}(U)$ generated by U and the identity operator 1_{K} on K as follows:

For any $f, g \in C(\operatorname{Sp}(U))$ and any $\alpha, \beta \in \mathbb{C}$ we have
(i) $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
(ii) $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi(f)=\Phi(f)^{*}$;
(iii) $\|\Phi(f)\|=\|f\|:=\sup _{t \in \operatorname{Sp}(U)}|f(t)|$;
(iv) $\Phi\left(f_{0}\right)=1_{K}$ and $\Phi\left(f_{1}\right)=U$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in \operatorname{Sp}(U)$.

With this notation we define

$$
f(U):=\Phi(f) \quad \text { for all } f \in C(\operatorname{Sp}(U))
$$

and we call it the continuous functional calculus for a selfadjoint operator U.

If U is a selfadjoint operator and f is a real valued continuous function on $\operatorname{Sp}(U)$, then $f(t) \geq 0$ for any $t \in \operatorname{Sp}(U)$ implies that $f(U) \geq 0$, i.e. $f(U)$ is a positive operator on K. Moreover, if both f and g are real valued functions on $\mathrm{Sp}(U)$ then the following important property holds: (P) $f(t) \geq g(t) \quad$ for any $t \in \operatorname{Sp}(U) \quad$ implies that $f(U) \geq g(U)$ in the operator order of $B(K)$.

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function. Utilising the continuous functional calculus for the Araki selfadjoint operator $\mathfrak{A}_{Q, P} \in$ $\mathcal{B}(\mathcal{M})$ we can define the quantum f-divergence for $Q, P \in S_{1}(\mathcal{M}):=$ $\{P \in \mathcal{M}, P \geq 0$ with $\operatorname{tr}(P)=1\}$ and P invertible, by

$$
S_{f}(Q, P):=\left\langle f\left(\mathfrak{A}_{Q, P}\right) P^{1 / 2}, P^{1 / 2}\right\rangle_{2}=\operatorname{tr}\left(P^{1 / 2} f\left(\mathfrak{A}_{Q, P}\right) P^{1 / 2}\right) .
$$

If we consider the continuous convex function $f:[0, \infty) \rightarrow \mathbb{R}$, with $f(0):=0$ and $f(t)=t \ln t$ for $t>0$ then for $Q, P \in S_{1}(\mathcal{M})$ and Q, P invertible we have

$$
S_{f}(Q, P)=\operatorname{tr}[Q(\ln Q-\ln P)]=: U(Q, P),
$$

which is the Umegaki relative entropy.
If we take the continuous convex function $f:[0, \infty) \rightarrow \mathbb{R}, f(t)=$ $|t-1|$ for $t \geq 0$ then for $Q, P \in S_{1}(H)$ with P invertible we have

$$
S_{f}(Q, P)=\operatorname{tr}(|Q-P|)=: V(Q, P),
$$

where $V(Q, P)$ is the variational distance.
If we take $f:[0, \infty) \rightarrow \mathbb{R}, f(t)=t^{2}-1$ for $t \geq 0$ then for Q, $P \in S_{1}(\mathcal{M})$ with P invertible we have

$$
S_{f}(Q, P)=\operatorname{tr}\left(Q^{2} P^{-1}\right)-1=: \chi^{2}(Q, P),
$$

which is called the χ^{2}-distance

Let $q \in(0,1)$ and define the convex function $f_{q}:[0, \infty) \rightarrow \mathbb{R}$ by $f_{q}(t)=\frac{1-t^{q}}{1-q}$. Then

$$
S_{f_{q}}(Q, P)=\frac{1-\operatorname{tr}\left(Q^{q} P^{1-q}\right)}{1-q}
$$

which is Tsallis relative entropy.
If we consider the convex function $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(t)=\frac{1}{2}(\sqrt{t}-1)^{2}$, then

$$
S_{f}(Q, P)=1-\operatorname{tr}\left(Q^{1 / 2} P^{1 / 2}\right)=: h^{2}(Q, P),
$$

which is known as Hellinger discrimination.
If we take $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=-\ln t$ then for $Q, P \in S_{1}(\mathcal{M})$ and Q, P invertible we have

$$
S_{f}(Q, P)=\operatorname{tr}[P(\ln P-\ln Q)]=U(P, Q) .
$$

The reader can obtain other particular quantum f-divergence measures by utilizing the normalized convex functions from Introduction, namely the convex functions defining the dichotomy class, Matsushita's divergences, Puri-Vincze divergences or divergences of Arimoto-type. We omit the details.

In the important case of finite dimensional spaces and the generalized inverse P^{-1}, numerous properties of the quantum f-divergence, mostly in the case when f is operator convex, have been obtained in the recent papers [17], [18], [22]- [25] and the references therein.

In what follows we obtain several inequalities for the larger class of convex functions on an interval.

3. Inequalities for f Convex and Normalized

Suppose that I is an interval of real numbers with interior I and $f: I \rightarrow \mathbb{R}$ is a convex function on I. Then f is continuous on \check{I} and has finite left and right derivatives at each point of $\stackrel{\circ}{I}$. Moreover, if $x, y \in \stackrel{\circ}{I}$ and $x<y$, then $f_{-}^{\prime}(x) \leq f_{+}^{\prime}(x) \leq f_{-}^{\prime}(y) \leq f_{+}^{\prime}(y)$, which shows that both f_{-}^{\prime} and f_{+}^{\prime} are nondecreasing function on $\stackrel{I}{I}$. It is also known that a convex function must be differentiable except for at most countably many points.

For a convex function $f: I \rightarrow \mathbb{R}$, the subdifferential of f denoted by ∂f is the set of all functions $\varphi: I \rightarrow[-\infty, \infty]$ such that $\varphi(\stackrel{\circ}{I}) \subset \mathbb{R}$ and

$$
\begin{equation*}
f(x) \geq f(a)+(x-a) \varphi(a) \text { for any } x, a \in I \tag{G}
\end{equation*}
$$

It is also well known that if f is convex on I, then ∂f is nonempty, $f_{-}^{\prime}, f_{+}^{\prime} \in \partial f$ and if $\varphi \in \partial f$, then

$$
f_{-}^{\prime}(x) \leq \varphi(x) \leq f_{+}^{\prime}(x) \text { for any } x \in \stackrel{\circ}{I} .
$$

In particular, φ is a nondecreasing function.
If f is differentiable and convex on $\stackrel{\circ}{I}$, then $\partial f=\left\{f^{\prime}\right\}$.
We are able now to state and prove the first result concerning the quantum f-divergence for the general case of convex functions.

Theorem 4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function that is normalized, i.e. $f(1)=0$. Then for any $Q, P \in S_{1}(\mathcal{M})$, with P invertible, we have

$$
\begin{equation*}
0 \leq S_{f}(Q, P) \tag{3.1}
\end{equation*}
$$

Moreover, if f is continuously differentiable, then also

$$
\begin{equation*}
S_{f}(Q, P) \leq S_{\ell f^{\prime}}(Q, P)-S_{f^{\prime}}(Q, P) \tag{3.2}
\end{equation*}
$$

where the function ℓ is defined as $\ell(t)=t, t \in \mathbb{R}$.
Proof. Since f is convex and normalized, then by the gradient inequality (G) we have

$$
f(t) \geq(t-1) f_{+}^{\prime}(1)
$$

for $t>0$.
Applying the property (P) for the operator $\mathfrak{A}_{Q, P}$, then we have for any $T \in \mathcal{M}$

$$
\begin{aligned}
\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2} & \geq f_{+}^{\prime}(1)\left\langle\left(\mathfrak{A}_{Q, P}-1_{\mathcal{B}_{2}(H)}\right) T, T\right\rangle_{2} \\
& =f_{+}^{\prime}(1)\left[\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-\|T\|_{2}\right],
\end{aligned}
$$

which, in terms of trace, can be written as

$$
\begin{equation*}
\operatorname{tr}\left(T^{*} f\left(\mathfrak{A}_{Q, P}\right) T\right) \geq f_{+}^{\prime}(1)\left[\operatorname{tr}\left(\left|Q^{1 / 2} T P^{-1 / 2}\right|^{2}\right)-\operatorname{tr}\left(|T|^{2}\right)\right] \tag{3.3}
\end{equation*}
$$

for any $T \in \mathcal{M}$.
Now, if we take in (3.3) $T=P^{1 / 2}$ where $P \in S_{1}(\mathcal{M})$, with P invertible, then we get

$$
S_{f}(Q, P) \geq f_{+}^{\prime}(1)[\operatorname{tr}(Q)-\operatorname{tr}(P)]=0
$$

and the inequality (3.1) is proved.
Further, if f is continuously differentiable, then by the gradient inequality we also have

$$
(t-1) f^{\prime}(t) \geq f(t)
$$

for $t>0$.
Applying the property (P) for the operator $\mathfrak{A}_{Q, P}$, then we have for any $T \in \mathcal{M}$

$$
\left\langle\left(\mathfrak{A}_{Q, P}-1_{\mathcal{B}_{2}(H)}\right) f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2} \geq\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2},
$$

namely

$$
\left\langle\mathfrak{A}_{Q, P} f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}-\left\langle f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2} \geq\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2},
$$

for any $T \in \mathcal{M}$, or in terms of trace
(3.4) $\operatorname{tr}\left(T^{*} \mathfrak{A}_{Q, P} f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T\right)-\operatorname{tr}\left(T^{*} f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T\right) \geq \operatorname{tr}\left(T^{*} f\left(\mathfrak{A}_{Q, P}\right) T\right)$,
for any $T \in \mathcal{M}$.
If in (3.4) we take $T=P^{1 / 2}$, where $P \in S_{1}(\mathcal{M})$, with P invertible, then we get the desired result (3.2).

Remark 2. If we take in (3.2) $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=-\ln t$ then for $Q, P \in S_{1}(\mathcal{M})$ and Q, P invertible we have

$$
\begin{equation*}
0 \leq U(P, Q) \leq \chi^{2}(P, Q) \tag{3.5}
\end{equation*}
$$

We need the following lemma.
Lemma 1. Let S be a selfadjoint operator on the Hilbert space $(H,\langle\cdot, \cdot\rangle)$ and with spectrum $\operatorname{Sp}(S) \subseteq[\gamma, \Gamma]$ for some real numbers γ, Γ. If g : $[\gamma, \Gamma] \rightarrow \mathbb{C}$ is a continuous function such that

$$
\begin{equation*}
|g(t)-\lambda| \leq \rho \text { for any } t \in[\gamma, \Gamma] \tag{3.6}
\end{equation*}
$$

for some complex number $\lambda \in \mathbb{C}$ and positive number ρ, then

$$
\begin{align*}
|\langle S g(S) x, x\rangle-\langle S x, x\rangle\langle g(S) x, x\rangle| & \leq \rho\langle | S-\langle S x, x\rangle 1_{H}|x, x\rangle \tag{3.7}\\
& \leq \rho\left[\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2}\right]^{1 / 2}
\end{align*}
$$

for any $x \in H,\|x\|=1$.
Proof. We observe that
$\langle S g(S) x, x\rangle-\langle S x, x\rangle\langle g(S) x, x\rangle=\left\langle\left(S-\langle S x, x\rangle 1_{H}\right)\left(g(S)-\lambda 1_{H}\right) x, x\right\rangle$
for any $x \in H,\|x\|=1$.

For any selfadjoint operator B we have the modulus inequality

$$
\begin{equation*}
|\langle B x, x\rangle| \leq\langle | B|x, x\rangle \text { for any } x \in H,\|x\|=1 \tag{3.9}
\end{equation*}
$$

Also, utilizing the continuous functional calculus we have for each fixed $x \in H,\|x\|=1$

$$
\begin{aligned}
\left|\left(S-\langle S x, x\rangle 1_{H}\right)\left(g(S)-\lambda 1_{H}\right)\right| & =\left|S-\langle S x, x\rangle 1_{H}\right|\left|g(S)-\lambda 1_{H}\right| \\
& \leq \rho\left|S-\langle S x, x\rangle 1_{H}\right|,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\langle |\left(S-\langle S x, x\rangle 1_{H}\right)\left(g(S)-\lambda 1_{H}\right)|x, x\rangle \leq \rho\langle | S-\langle S x, x\rangle 1_{H}|x, x\rangle \tag{3.10}
\end{equation*}
$$

for any $x \in H,\|x\|=1$.
Therefore, by taking the modulus in (3.8) and utilizing (3.9) and (3.10) we get

$$
\begin{align*}
& |\langle S g(S) x, x\rangle-\langle S x, x\rangle\langle g(S) x, x\rangle| \tag{3.11}\\
& =\left|\left\langle\left(S-\langle S x, x\rangle 1_{H}\right)\left(g(S)-\lambda 1_{H}\right) x, x\right\rangle\right| \\
& \leq\langle |\left(S-\langle S x, x\rangle 1_{H}\right)\left(g(S)-\lambda 1_{H}\right)|x, x\rangle \\
& \leq \rho\langle | S-\langle S x, x\rangle 1_{H}|x, x\rangle
\end{align*}
$$

for any $x \in H,\|x\|=1$, which proves the first inequality in (3.7).
Using Schwarz inequality we also have

$$
\begin{aligned}
\langle | S-\langle S x, x\rangle 1_{H}|x, x\rangle & \leq\left\langle\left(S-\langle S x, x\rangle 1_{H}\right)^{2} x, x\right\rangle^{1 / 2} \\
& =\left[\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2}\right]^{1 / 2}
\end{aligned}
$$

for any $x \in H,\|x\|=1$, and the lemma is proved.
Corollary 1. With the assumption of Lemma 1, we have

$$
\begin{align*}
& \leq\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2} \leq \frac{1}{2}(\Gamma-\gamma)\langle | S-\langle S x, x\rangle 1_{H}|x, x\rangle \tag{3.12}\\
& \leq \frac{1}{2}(\Gamma-\gamma)\left[\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2}\right]^{1 / 2} \leq \frac{1}{4}(\Gamma-\gamma)^{2},
\end{align*}
$$

for any $x \in H,\|x\|=1$.

Proof. If we take in Lemma $1 g(t)=t, \lambda=\frac{1}{2}(\Gamma+\gamma)$ and $\rho=$ $\frac{1}{2}(\Gamma-\gamma)$, then we get

$$
\begin{align*}
0 & \leq\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2} \leq \frac{1}{2}(\Gamma-\gamma)\langle | S-\langle S x, x\rangle 1_{H}|x, x\rangle \tag{3.13}\\
& \leq \frac{1}{2}(\Gamma-\gamma)\left[\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2}\right]^{1 / 2}
\end{align*}
$$

for any $x \in H,\|x\|=1$.
From the first and last terms in (3.13) we have

$$
\left[\left\langle S^{2} x, x\right\rangle-\langle S x, x\rangle^{2}\right]^{1 / 2} \leq \frac{1}{2}(\Gamma-\gamma)
$$

which proves the rest of (3.12).
We can prove the following result that provides simpler upper bounds for the quantum f-divergence when the operators P and Q satisfy the condition (2.2).

Theorem 5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function that is normalized. If $Q, P \in S_{1}(\mathcal{M})$, with P invertible, and there exists $R \geq 1 \geq r \geq 0$ such that

$$
\begin{equation*}
r \operatorname{tr}\left(|T|^{2}\right) \leq \operatorname{tr}\left(\left|Q^{1 / 2} T P^{-1 / 2}\right|^{2}\right) \leq R \operatorname{tr}\left(|T|^{2}\right) \tag{3.14}
\end{equation*}
$$

for any $T \in \mathcal{M}$, then

$$
\begin{align*}
0 & \leq S_{f}(Q, P) \leq \frac{1}{2}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] V(Q, P) \tag{3.15}\\
& \leq \frac{1}{2}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] \chi(Q, P) \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] .
\end{align*}
$$

Proof. Without loosing the generality, we prove the inequality in the case that f is continuously differentiable on $(0, \infty)$.

Since f^{\prime} is monotonic nondecreasing on $[r, R]$ we have that

$$
f^{\prime}(r) \leq f^{\prime}(t) \leq f^{\prime}(R) \text { for any } t \in[r, R],
$$

which implies that

$$
\left|f^{\prime}(t)-\frac{f^{\prime}(R)+f^{\prime}(r)}{2}\right| \leq \frac{1}{2}\left[f^{\prime}(R)-f^{\prime}(r)\right]
$$

for any $t \in[r, R]$.

Applying Lemma 1 and Corollary 1 in the Hilbert space $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{2}\right)$ and for the selfadjoint operator $\mathfrak{A}_{Q, P}$ we have

$$
\begin{aligned}
& \left|\left\langle\mathfrak{A}_{Q, P} f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\left\langle f^{\prime}\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}\right| \\
& \leq \frac{1}{2}\left[f^{\prime}(R)-f^{\prime}(r)\right]\langle | \mathfrak{A}_{Q, P}-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2} 1_{\mathcal{B}_{2}(H)}|T, T\rangle_{2} \\
& \leq \frac{1}{2}\left[f^{\prime}(R)-f^{\prime}(r)\right]\left[\left\langle\mathfrak{A}_{Q, P}^{2} T, T\right\rangle_{2}-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}^{2}\right]^{1 / 2} \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right]
\end{aligned}
$$

for any $T \in \mathcal{M},\|T\|_{2}=1$.
If in this inequality we take $T=P^{1 / 2}, P \in S_{1}(\mathcal{M})$, with P invertible, then we get

$$
\begin{aligned}
& \left|\left\langle\mathfrak{A}_{Q, P} f^{\prime}\left(\mathfrak{A}_{Q, P}\right) P^{1 / 2}, P^{1 / 2}\right\rangle_{2}-\left\langle f^{\prime}\left(\mathfrak{A}_{Q, P}\right) P^{1 / 2}, P^{1 / 2}\right\rangle_{2}\right| \\
& \leq \frac{1}{2}\left[f^{\prime}(R)-f^{\prime}(r)\right]\langle | \mathfrak{A}_{Q, P}-\left\langle\mathfrak{A}_{Q, P} P^{1 / 2}, P^{1 / 2}\right\rangle_{2} 1_{\mathcal{B}_{2}(H)}\left|P^{1 / 2}, P^{1 / 2}\right\rangle_{2} \\
& \leq \frac{1}{2}\left[f^{\prime}(R)-f^{\prime}(r)\right]\left[\left\langle\mathfrak{A}_{Q, P}^{2} P^{1 / 2}, P^{1 / 2}\right\rangle_{2}-\left\langle\mathfrak{A}_{Q, P} P^{1 / 2}, P^{1 / 2}\right\rangle_{2}^{2}\right]^{1 / 2} \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right],
\end{aligned}
$$

which can be written as

$$
\begin{aligned}
\left|S_{\ell f^{\prime}}(Q, P)-S_{f^{\prime}}(Q, P)\right| & \leq \frac{1}{2}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] V(Q, P) \\
& \leq \frac{1}{2}\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] \chi(Q, P) \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] .
\end{aligned}
$$

Making use of Theorem 4 we deduce the desired result (3.15).
Remark 3. If we take in (3.15) $f(t)=t^{2}-1$, then we get

$$
\begin{align*}
0 & \leq \chi^{2}(Q, P) \leq \frac{1}{2}(R-r) V(Q, P) \leq \frac{1}{2}(R-r) \chi(Q, P) \tag{3.16}\\
& \leq \frac{1}{4}(R-r)^{2}
\end{align*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14).

If we take in (3.15) $f(t)=t \ln t$, then we get the inequality

$$
\begin{align*}
0 & \leq U(Q, P) \leq \frac{1}{2} \ln \left(\frac{R}{r}\right) V(Q, P) \leq \frac{1}{2} \ln \left(\frac{R}{r}\right) \chi(Q, P) \tag{3.17}\\
& \leq \frac{1}{4}(R-r) \ln \left(\frac{R}{r}\right)
\end{align*}
$$

provided that $Q, P \in S_{1}(H)$, with P, Q invertible and satisfying the condition (3.14).

With the same conditions and if we take $f(t)=-\ln t$, then

$$
\begin{equation*}
0 \leq U(P, Q) \leq \frac{R-r}{2 r R} V(Q, P) \leq \frac{R-r}{2 r R} \chi(Q, P) \leq \frac{(R-r)^{2}}{4 r R} \tag{3.18}
\end{equation*}
$$

If we take in (3.15) $f(t)=f_{q}(t)=\frac{1-t^{q}}{1-q}$, then we get

$$
\begin{align*}
0 & \leq S_{f_{q}}(Q, P) \leq \frac{q}{2(1-q)}\left(\frac{R^{1-q}-r^{1-q}}{R^{1-q} r^{1-q}}\right) V(Q, P) \tag{3.19}\\
& \leq \frac{q}{2(1-q)}\left(\frac{R^{1-q}-r^{1-q}}{R^{1-q} r^{1-q}}\right) \chi(Q, P) \\
& \leq \frac{q}{4(1-q)}\left(\frac{R^{1-q}-r^{1-q}}{R^{1-q} r^{1-q}}\right)(R-r)
\end{align*}
$$

provided that $Q, P \in S_{1}(\mathcal{M})$, with P, Q invertible and satisfying the condition (3.14).

4. Other Reverse Inequalities

Utilising different techniques we can obtain other upper bounds for the quantum f-divergence as follows. Applications for Umegaki relative entropy and χ^{2}-divergence are also provided.

Theorem 6. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function that is normalized. If $Q, P \in S_{1}(\mathcal{M})$, with P invertible, and there exists $R \geq 1 \geq r \geq 0$ such that the condition (3.14) is satisfied, then

$$
\begin{equation*}
0 \leq S_{f}(Q, P) \leq \frac{(R-1) f(r)+(1-r) f(R)}{R-r} \tag{4.1}
\end{equation*}
$$

Proof. By the convexity of f we have

$$
f(t)=f\left(\frac{(R-t) r+(t-r) R}{R-r}\right) \leq \frac{(R-t) f(r)+(t-r) f(R)}{R-r}
$$

for any $t \in[r, R]$.
This inequality implies the following inequality in the operator order of $\mathcal{B}(\mathcal{M})$

$$
f\left(\mathfrak{A}_{Q, P}\right) \leq \frac{\left(R 1_{\mathcal{M}}-\mathfrak{A}_{Q, P}\right) f(r)+\left(\mathfrak{A}_{Q, P}-r 1_{\mathcal{M}}\right) f(R)}{R-r}
$$

which can be written as

$$
\begin{align*}
& \left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2} \tag{4.2}\\
& \leq \frac{f(r)}{R-r}\left\langle\left(R 1_{\mathcal{M}}-\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}+\frac{f(R)}{R-r}\left\langle\left(\mathfrak{A}_{Q, P}-r 1_{\mathcal{M}}\right) T, T\right\rangle_{2}
\end{align*}
$$

for any $T \in \mathcal{M}$.
Now, if we take in (4.2) $T=P^{1 / 2}, P \in S_{1}(\mathcal{M})$, then we get the desired result (4.2).

Remark 4. If we take in (4.1) $f(t)=t^{2}-1$, then we get

$$
\begin{equation*}
0 \leq \chi^{2}(Q, P) \leq(R-1)(1-r) \frac{R+r+2}{R-r} \tag{4.3}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14).
If we take in (4.1) $f(t)=t \ln t$, then we get the inequality

$$
\begin{equation*}
0 \leq U(Q, P) \leq \ln \left[r^{\frac{(R-1) r}{R-r}} R^{\frac{R(1-r)}{R-r}}\right] \tag{4.4}
\end{equation*}
$$

provided that $Q, P \in S_{1}(\mathcal{M})$, with P, Q invertible and satisfying the condition (3.14).

If we take in (4.1) $f(t)=-\ln t$, then we get the inequality

$$
\begin{equation*}
0 \leq U(P, Q) \leq \ln \left[r^{\frac{1-R}{R-r}} R^{\frac{r-1}{R-r}}\right] \tag{4.5}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P, Q invertible and satisfying the condition (3.14).

We also have:
Theorem 7. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function that is normalized. If $Q, P \in S_{1}(\mathcal{M})$, with P invertible, and there
exists $R>1>r \geq 0$ such that the condition (3.14) is satisfied, then

$$
\begin{align*}
0 & \leq S_{f}(Q, P) \leq \frac{(R-1)(1-r)}{R-r} \Psi_{f}(1 ; r, R) \tag{4.6}\\
& \leq \frac{(R-1)(1-r)}{R-r} \sup _{t \in(r, R)} \Psi_{f}(t ; r, R) \\
& \leq(R-1)(1-r) \frac{f_{-}^{\prime}(R)-f_{+}^{\prime}(r)}{R-r} \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right]
\end{align*}
$$

where $\Psi_{f}(\cdot ; r, R):(r, R) \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
\Psi_{f}(t ; r, R)=\frac{f(R)-f(t)}{R-t}-\frac{f(t)-f(r)}{t-r} \tag{4.7}
\end{equation*}
$$

We also have

$$
\begin{align*}
0 & \leq S_{f}(Q, P) \leq \frac{(R-1)(1-r)}{R-r} \Psi_{f}(1 ; r, R) \tag{4.8}\\
& \leq \frac{1}{4}(R-r) \Psi_{f}(1 ; r, R) \\
& \leq \frac{1}{4}(R-r) \sup _{t \in(r, R)} \Psi_{f}(t ; r, R) \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right] .
\end{align*}
$$

Proof. By denoting

$$
\Delta_{f}(t ; r, R):=\frac{(t-r) f(R)+(R-t) f(r)}{R-r}-f(t), \quad t \in[r, R]
$$

we have

$$
\begin{align*}
\Delta_{f}(t ; r, R) & =\frac{(t-r) f(R)+(R-t) f(r)-(R-r) f(t)}{R-r} \tag{4.9}\\
& =\frac{(t-r) f(R)+(R-t) f(r)-(T-t+t-r) f(t)}{R-r} \\
& =\frac{(t-r)[f(R)-f(t)]-(R-t)[f(t)-f(r)]}{M-m} \\
& =\frac{(R-t)(t-r)}{R-r} \Psi_{f}(t ; r, R)
\end{align*}
$$

for any $t \in(r, R)$.

From the proof of Theorem 6 we have
(4.10) $\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}$

$$
\begin{aligned}
& \leq \frac{f(r)}{R-r}\left\langle\left(R 1_{\mathcal{M}}-\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}+\frac{f(R)}{R-r}\left\langle\left(\mathfrak{A}_{Q, P}-r 1_{\mathcal{M}}\right) T, T\right\rangle_{2} \\
& =\frac{\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right) f(R)+\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) f(r)}{R-r}
\end{aligned}
$$

for any $T \in \mathcal{M},\|T\|_{2}=1$.
This implies that

$$
\begin{align*}
0 & \leq\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}-f\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) \tag{4.11}\\
& \leq \frac{\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right) f(R)+\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) f(r)}{R-r}-f\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) \\
& =\Delta_{f}\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2} ; r, R\right) \\
& =\frac{\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right)\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right)}{R-r} \Psi_{f}\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2} ; r, R\right)
\end{align*}
$$

for any $T \in \mathcal{M},\|T\|_{2}=1$.
Since

$$
\begin{align*}
\Psi_{f}\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2} ; r, R\right) & \leq \sup _{t \in(r, R)} \Psi_{f}(t ; r, R) \tag{4.12}\\
& =\sup _{t \in(r, R)}\left[\frac{f(R)-f(t)}{R-t}-\frac{f(t)-f(r)}{t-r}\right] \\
& \leq \sup _{t \in(r, R)}\left[\frac{f(R)-f(t)}{R-t}\right]+\sup _{t \in(r, R)}\left[-\frac{f(t)-f(r)}{t-r}\right] \\
& =\sup _{t \in(r, R)}\left[\frac{f(R)-f(t)}{R-t}\right]-\inf _{t \in(r, R)}\left[\frac{f(t)-f(r)}{t-r}\right] \\
& =f_{-}^{\prime}(R)-f_{+}^{\prime}(r),
\end{align*}
$$

and, obviously

$$
\begin{equation*}
\frac{1}{R-r}\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right)\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right) \leq \frac{1}{4}(R-r), \tag{4.13}
\end{equation*}
$$

then by (4.11)-(4.13) we have

$$
\begin{align*}
0 & \leq\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}-f\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) \tag{4.14}\\
& \leq \frac{\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right)\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right)}{R-r} \Psi_{f}\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2} ; r, R\right) \\
& \leq \frac{\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right)\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right)}{R-r} \sup _{t \in(r, R)} \Psi_{f}(t ; r, R) \\
& \leq\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right)\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right) \frac{f_{-}^{\prime}(R)-f_{+}^{\prime}(r)}{R-r} \\
& \leq \frac{1}{4}(R-r)\left[f_{-}^{\prime}(R)-f_{+}^{\prime}(r)\right]
\end{align*}
$$

for any $T \in \mathcal{M},\|T\|_{2}=1$.
Now, if we take in (4.14) $T=P^{1 / 2}$, then we get the desired result (4.6).

The inequality (4.8) is obvious from (4.6).
Remark 5. If we consider the convex normalized function $f(t)=$ $t^{2}-1$, then

$$
\Psi_{f}(t ; r, R)=\frac{R^{2}-t^{2}}{R-t}-\frac{t^{2}-r^{2}}{t-r}=R-r, t \in(r, R)
$$

and we get from (4.6) the simple inequality

$$
\begin{equation*}
0 \leq \chi^{2}(Q, P) \leq(R-1)(1-r) \tag{4.15}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14), which is better than (4.3).

If we take the convex normalized function $f(t)=t^{-1}-1$, then we have

$$
\Psi_{f}(t ; r, R)=\frac{R^{-1}-t^{-1}}{R-t}-\frac{t^{-1}-r^{-1}}{t-r}=\frac{R-r}{r R t}, t \in[r, R] .
$$

Also

$$
S_{f}(Q, P)=\chi^{2}(P, Q)
$$

Using (4.6) we get

$$
\begin{equation*}
0 \leq \chi^{2}(P, Q) \leq \frac{(R-1)(1-r)}{R r} \tag{4.16}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with Q invertible and satisfying the condition (3.14).

If we consider the convex function $f(t)=-\ln t$ defined on $[r, R] \subset$ $(0, \infty)$, then

$$
\begin{aligned}
\Psi_{f}(t ; r, R) & =\frac{-\ln R+\ln t}{R-t}-\frac{-\ln t+\ln r}{t-r} \\
& =\frac{(R-r) \ln t-(R-t) \ln r-(t-r) \ln R}{(M-t)(t-m)} \\
& =\ln \left(\frac{t^{R-r}}{r^{R-t} M^{t-r}}\right)^{\frac{1}{(R-t)(t-r)}}, t \in(r, R) .
\end{aligned}
$$

Then by (4.6) we have

$$
\begin{equation*}
0 \leq U(P, Q) \leq \ln \left[r^{\frac{1-R}{R-r}} R^{\frac{r-1}{R-r}}\right] \leq \frac{(R-1)(1-r)}{r R} \tag{4.17}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P, Q invertible and satisfying the condition (3.14).

We also have:
Theorem 8. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous convex function that is normalized. If $Q, P \in S_{1}(\mathcal{M})$, with P invertible, and there exists $R>1>r \geq 0$ such that the condition (3.14) is satisfied, then

$$
\begin{equation*}
0 \leq S_{f}(Q, P) \leq 2\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right] \tag{4.18}
\end{equation*}
$$

Proof. We recall the following result (see for instance [4]) that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$
\begin{align*}
& n \min _{i \in\{1, \ldots, n\}}\left\{p_{i}\right\}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\right] \tag{4.19}\\
& \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
& \leq n \max _{i \in\{1, \ldots, n\}}\left\{p_{i}\right\}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\right]
\end{align*}
$$

where $f: C \rightarrow \mathbb{R}$ is a convex function defined on the convex subset C of the linear space $X,\left\{x_{i}\right\}_{i \in\{1, \ldots, n\}} \subset C$ are vectors and $\left\{p_{i}\right\}_{i \in\{1, \ldots, n\}}$ are nonnegative numbers with $P_{n}:=\sum_{i=1}^{n} p_{i}>0$.

For $n=2$ we deduce from (3.6) that

$$
\begin{align*}
& 2 \min \{s, 1-s\}\left[\frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right)\right] \tag{4.20}\\
& \leq s f(x)+(1-s) f(y)-f(s x+(1-s) y) \\
& \leq 2 \max \{s, 1-s\}\left[\frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right)\right]
\end{align*}
$$

for any $x, y \in C$ and $s \in[0,1]$.
Now, if we use the second inequality in (4.20) for $x=r, y=R$, $s=\frac{R-t}{R-r}$ with $t \in[r, R]$, then we have

$$
\begin{align*}
& \frac{(R-t) f(r)+(t-r) f(R)}{R-r}-f(t) \tag{4.21}\\
& \leq 2 \max \left\{\frac{R-t}{R-r}, \frac{t-r}{R-r}\right\}\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right] \\
& =\left[1+\frac{2}{R-r}\left|t-\frac{r+R}{2}\right|\right]\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right]
\end{align*}
$$

for any $t \in[r, R]$.
This implies in the operator order of $\mathcal{B}(\mathcal{M})$

$$
\begin{aligned}
& \frac{\left(R 1_{\mathcal{M}}-\mathfrak{A}_{Q, P}\right) f(r)+\left(\mathfrak{A}_{Q, P}-r 1_{\mathcal{M}}\right) f(R)}{R-r}-f\left(\mathfrak{A}_{Q, P}\right) \\
& \leq\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right] \\
& \times\left[1_{\mathcal{M}}+\frac{2}{R-r}\left|\mathfrak{A}_{Q, P}-\frac{r+R}{2} 1_{\mathcal{M}}\right|\right]
\end{aligned}
$$

which implies that

$$
\begin{align*}
0 & \leq\left\langle f\left(\mathfrak{A}_{Q, P}\right) T, T\right\rangle_{2}-f\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) \tag{4.22}\\
& \leq \frac{\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}-r\right) f(R)+\left(R-\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) f(r)}{R-r}-f\left(\left\langle\mathfrak{A}_{Q, P} T, T\right\rangle_{2}\right) \\
& \leq\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right] \\
& \times\left[1+\frac{2}{R-r}\langle | \mathfrak{A}_{Q, P}-\frac{r+R}{2} 1_{\mathcal{M}}|T, T\rangle_{2}\right] \\
& \leq 2\left[\frac{f(r)+f(R)}{2}-f\left(\frac{r+R}{2}\right)\right]
\end{align*}
$$

for any $T \in \mathcal{M},\|T\|_{2}=1$.
If we take in (4.22) $T=P^{1 / 2}, P \in S_{1}(\mathcal{M})$, then we get the desired result (4.18).

Remark 6. If we take $f(t)=t^{2}-1$ in (4.18), then we get

$$
0 \leq \chi^{2}(Q, P) \leq \frac{1}{2}(R-r)^{2}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14), which is not as good as (4.15).

If we take in (4.18) $f(t)=t^{-1}-1$, then we have

$$
\begin{equation*}
0 \leq \chi^{2}(P, Q) \leq \frac{(R-r)^{2}}{r R(r+R)} \tag{4.23}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14).
If we take in (4.18) $f(t)=-\ln t$, then we have

$$
\begin{equation*}
0 \leq U(P, Q) \leq \ln \left(\frac{(R+r)^{2}}{4 r R}\right) \tag{4.24}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14).
From (3.18) we have the following absolute upper bound

$$
\begin{equation*}
0 \leq U(P, Q) \leq \frac{(R-r)^{2}}{4 r R} \tag{4.25}
\end{equation*}
$$

for $Q, P \in S_{1}(\mathcal{M})$, with P invertible and satisfying the condition (3.14).

Utilising the elementary inequality $\ln x \leq x-1, x>0$, we have that

$$
\ln \left(\frac{(R+r)^{2}}{4 r R}\right) \leq \frac{(R-r)^{2}}{4 r R}
$$

which shows that (4.24) is better than (4.25).

References

[1] P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f-divergence via mean results, Math. Comput. Modeling 42 (1-2) (2005), 207-219.
[2] P. Cerone, S. S. Dragomir and F. Österreicher, Bounds on extended fdivergences for a variety of classes, Kybernetika (Prague) 40 (6) (2004), 745756. Preprint, RGMIA Res. Rep. Coll. 6 (1) (2003), Article 5. [ONLINE: http://rgmia.vu.edu.au/v6n1.html].
[3] I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 85-108.
[4] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 471-476.
[5] S. S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for the Csiszár Φ-divergence in information theory, Math. J. Ibaraki Univ. 33 (2001), 35-50.
[6] S. S. Dragomir, Some inequalities for two Csiszár divergences and applications, Mat. Bilten. 25 (2001), 73-90.
[7] S. S. Dragomir, An upper bound for the Csiszár f-divergence in terms of the variational distance and applications, Panamer. Math. J. 12 (4) (2002), 43-54.
[8] S. S. Dragomir, Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications, Nonlinear Anal. Forum 7 (1) (2002), 1-13.
[9] S. S. Dragomir, Bounds for f-divergences under likelihood ratio constraints, Appl. Math. 48 (3) (2003), 205-223.
[10] S. S. Dragomir, New inequalities for Csiszár divergence and applications, Acta Math. Vietnam. 28 (2) (2003), 123-134.
[11] S. S. Dragomir, A generalized f-divergence for probability vectors and applications, Panamer. Math. J. 13 (4) (2003), 61-69.
[12] S. S. Dragomir, Some inequalities for the Csiszár φ-divergence when φ is an L-Lipschitzian function and applications, Ital. J. Pure Appl. Math. 15 (2004), 57-76.
[13] S. S. Dragomir, A converse inequality for the Csiszár Φ-divergence, Tamsui Oxf. J. Math. Sci. 20 (1) (2004), 35-53.
[14] S. S. Dragomir, Some general divergence measures for probability distributions, Acta Math. Hungar. 109 (4) (2005), 331-345.
[15] S. S. Dragomir, A refinement of Jensen's inequality with applications for f divergence measures, Taiwanese J. Math. 14 (1) (2010), 153-164.
[16] S. S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces, Commun. Math. Anal. 15 (2) (2013), 1-14.
[17] F. Hiai, Fumio and D. Petz, From quasi-entropy to various quantum information quantities, Publ. Res. Inst. Math. Sci. 48 (3) (2012), 525-542.
[18] F. Hiai, M. Mosonyi, D. Petz and C. Bény, Quantum f-divergences and error correction, Rev. Math. Phys. 23 (7) (2011), 691-747.
[19] P. Kafka, F. Österreicher and I. Vincze, On powers of f-divergence defining a distance, Studia Sci. Math. Hungar. 26(1991), 415-422.
[20] F. Liese and I. Vajda, Convex Statistical Distances, Teubuer - Texte zur Mathematik, Band 95, Leipzig, 1987.
[21] F. Österreicher and I. Vajda, A new class of metric divergences on probability spaces and its applicability in statistics, Ann. Inst. Statist. Math. 55 (3) (2003), 639-653.
[22] D. Petz, Quasi-entropies for states of a von Neumann algebra, Publ. RIMS. Kyoto Univ. 21 (1985), 781-800.
[23] D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23 (1986), 57-65.
[24] D. Petz, From quasi-entropy, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 55 (2012), 81-92.
[25] D. Petz, From f-divergence to quantum quasi-entropies and their use, Entropy 12 (3) (2010), 304-325.
[26] M. B. Ruskai, Inequalities for traces on von Neumann algebras, Commun. Math. Phys. 26 (1972), 280-289.

Silvestru Sever Dragomir

Mathematics, School of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
E-mail: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
DST-NRF Centre of Excellence
in the Mathematical and Statistical Sciences
School of Computer Science and Applied Mathematics
University of the Witwatersrand
Johannesburg, Private Bag 3, Wits 2050, South Africa

