DOI QR코드

DOI QR Code

Study of Collective Synchronous Dynamics in a Neural Network Model

  • Cho, Myoung Won (Department of Global Medical Science, Sungshin Women's University)
  • Received : 2018.04.25
  • Accepted : 2018.06.05
  • Published : 2018.11.15

Abstract

A network with coupled biological neurons provides various forms of collective synchronous dynamics. Such phase-locking dynamics states resemble eigenvectors in a linear coupling system in that the forms are determined by the symmetry of the coupling strengths. However, the states behave as attractors in a nonlinear dynamics system. We here study the collective synchronous dynamics in a neural system by using a novel theory. We exhibit how the period and the stability of individual phase-locking dynamics states are determined by the characteristics of synaptic couplings. We find that, contrary to common sense, the firing rate of a synchronized state decreases with increasing synaptic coupling strength.

Keywords

Acknowledgement

Supported by : Sungshin Women's University

References

  1. M-H. Park and S. Kim, J. Korean Phys. Soc. 29, 9 (1996).
  2. K. Okuda and Y. Kuramoto, Prog. Theor. Phys. 86, 1159 (1991). https://doi.org/10.1143/ptp/86.6.1159
  3. R. E. Mirollo and S. H. Strogatz, SIAM J. Appl. Math. 50, 1645 (1990) https://doi.org/10.1137/0150098
  4. S. H. Strogatz, R. E. Mirollo and P. C. Mattews, Phys. Rev. Lett. 68, 230 (1992).
  5. H. Sompolinsky, D. Golomb and D. Kleinfeld, Proc. Natl. Acad. Sci. USA 87, 7200 (1990) https://doi.org/10.1073/pnas.87.18.7200
  6. H. Sompolinsky, D. Golomb and D. Kleinfeld, Phys. Rev. A 43, 6990 (1991). https://doi.org/10.1103/PhysRevA.43.6990
  7. D. Hansel, G. Mato and C. Meunier, Europhy. Lett. 23, 367 (1993). https://doi.org/10.1209/0295-5075/23/5/011
  8. Y. Kuramoto, Proc. Theor. Phys. 79, 223 (1984). https://doi.org/10.1143/PTPS.79.223
  9. B. Ermentrout, in Neural Modeling and Neural Networks, edited by F. Ventriglia (Pergamon, Oxford, 1994).
  10. M. W. Cho and M. Y. Choi, Europhy. Lett. 115, 38001 (2016). https://doi.org/10.1209/0295-5075/115/38001
  11. D. H. Ackley, G. Hinton and T. Sejnowski, Cognitive Science 9, 147 (1985). https://doi.org/10.1207/s15516709cog0901_7
  12. M. W. Cho, J. Korean Phys. Soc. 71, 222 (2017). https://doi.org/10.3938/jkps.71.222
  13. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930). https://doi.org/10.1103/PhysRev.36.823
  14. H. Risken, Fokker-Plank Equation: Method of Solution and Applications (Springer-Verlag, New York, 1989).
  15. W. Gerstner, W. M. Kistler and R. Naud, Neuronal Dynamics (Cambridge University Press, New York, 2014).
  16. W. Gerstner and W. M. Kistler, Spiking Neuron Models (Cambridge Universe Press, New York, 2002).
  17. H. Kleinert, Gauge fields in condensed matter (World Scientific, Singapore, 1989).

Cited by

  1. Simulations in a Spiking Neural Network Model Based on the Free Energy Principle vol.75, pp.3, 2018, https://doi.org/10.3938/jkps.75.261
  2. Response Theory of Spiking Neural Networks vol.77, pp.2, 2018, https://doi.org/10.3938/jkps.77.168
  3. Supervised learning in a spiking neural network vol.79, pp.3, 2021, https://doi.org/10.1007/s40042-021-00254-4