DOI QR코드

DOI QR Code

Current Status of One-Dimensional Nanostructured Catalysts for Polymer Electrolyte Membrane Fuel Cell

고분자 전해질 막 연료 전지용 1차원 나노 구조 촉매의 연구 현황

  • Jeon, Kiung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Yeon Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2018.11.23
  • Accepted : 2018.12.17
  • Published : 2018.12.30

Abstract

With the expectation to overcome the problem of increasing energy consumption, polymer electrolyte membrane fuel cells are getting more attention as a promising environmentally friendly and sustainable next-generation energy conversion system. In spite of the rapid improvement of polymer electrolyte membrane fuel cells(PEMFCs), there are several critical issues still need to be resolved for practical commercialization. Out of the many issues, the main hurdle comes from oxygen reduction reaction(ORR), thus development of efficient ORR electrocatalysts is the main key for enhancing PEMFC performance. Among various catalysts, 1D nanostructured catalyst is a promising candidate because it holds many advantages that come from nanostructuring while supplementing the disadvantages of other nanostructures such as nanoparticles(0D) or gyroids(3D). This review focused on diverse 1D nanostructures and talks about their advantages as catalyst for ORR. Different 1D nanostructures will be introduced while applying the structures to different materials system showing the prospects of 1D nanostructures for improving PEMFC.

Keywords

References

  1. G.A. Florides, P. Christodoulides, Global warming and carbon dioxide through sciences, Environment International, 35, 390-401 (2009) https://doi.org/10.1016/j.envint.2008.07.007
  2. M. Irani, M. Fan, H. Ismail, A. Tuwati, B. Dutcher, A.G. Russell, Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for $CO_2$ sorption, Nano Energy, 11, 235-246 (2015) https://doi.org/10.1016/j.nanoen.2014.11.005
  3. J. Stacy, Y.N. Regmi, B. Leonard, M. Fan, The recent progress and future of oxygen reduction reaction catalysis: A review, Renewable and Sustainable Energy Reviews, 69, 401-414 (2017) https://doi.org/10.1016/j.rser.2016.09.135
  4. R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons (2006)
  5. Y. Li, J. Yang, J. Song, Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles, Renewable and Sustainable Energy Review, 67, 160-172 (2017) https://doi.org/10.1016/j.rser.2016.09.030
  6. B.D. James, J. Kalinoski, K, Baum, Manufacturing Cost Analysis of Fuel Cell Systems; U.S. DOE Hydrogen Program Annual Merit Review and Peer Evaluation, U.S. Department of Energy, Arlington, VA, USA, (2011)
  7. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486, 43-51 (2012) https://doi.org/10.1038/nature11115
  8. P.J. Ferreira, G.J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation, Journal of the Electrochemical Society, 152, A2256-A2271 (2005) https://doi.org/10.1149/1.2050347
  9. N. Yousfi-Steiner, P. Mocoteguy, D. Candusso, D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, Journal of Power Sources, 194, 130-145 (2009) https://doi.org/10.1016/j.jpowsour.2009.03.060
  10. D. Garrain, Y. Lechon, C.D.L. Rua, Polymer electrolyte membrane fuel cells (PEMFC) in automotive applications: environmental relevance of the manufacturing stage, Smart Grid Renewable Energy, 2, 68-74 (2011) https://doi.org/10.4236/sgre.2011.22009
  11. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chemie-International Edition, 53, 102-121 (2014) https://doi.org/10.1002/anie.201306588
  12. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry, 1, 552-556 (2009) https://doi.org/10.1038/nchem.367
  13. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, Journal of Physical Chemistry B, 108, 17886-17892 (2004) https://doi.org/10.1021/jp047349j
  14. K. Jiang, H.X. Zhang, S.Z. Zou, W.B. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Physical Chemistry Chemical Physics, 16, 20360-20376 (2014) https://doi.org/10.1039/C4CP03151B
  15. Kuttiyiel KA, et al. Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 5, 5297-5304 (2012) https://doi.org/10.1039/C1EE02067F
  16. Stamenkovic VR, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science, 315, 493-497 (2007) https://doi.org/10.1126/science.1135941
  17. Y.H. Bing, H.S. Liu, L. Zhang, D. Ghosh, J.J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction, Chemical Society Reviews, 39, 2184-2202 (2010) https://doi.org/10.1039/b912552c
  18. C. Chen, Y. J. Kang, Z. Y. Huo,Z. W. Zhu, W. Y. Huang, H. L. L. Xin, J. D. Snyder, D. G. Li,J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li,N. M. Markovic, G. A. Somorjai, P. D. Yang, Highly crystalline multimetallic nanoframes with threedimensional electrocatalytic surfaces, Science, 343, 1339-1343 (2014) https://doi.org/10.1126/science.1249061
  19. P.J. Ferreira, G.J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation, Journal of the Electrochemical Society, 152, A2256-A2271 (2005) https://doi.org/10.1149/1.2050347
  20. S.H. Sun, G.X. Zhang, D.S. Geng, Y.G. Chen, R.Y. Li, M. Cai, X.L. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal, Angewandte Chemie-International Edition, 50, 422-426 (2011) https://doi.org/10.1002/anie.201004631
  21. O.-H. Kim, Y.-H. Cho, S.H. Kang, H.-Y. Park, M. Kim, J.W. Lim, D.Y. Chung, M.J. Lee, H. Choe, Y.-E. Sung, Ordered macroporous platinum electrode and enhanced mss transfer in fuel cells using inverse opal structure, Nature Communication, 4, 2473, (2013) https://doi.org/10.1038/ncomms3473
  22. J. Kibsgaard, Y. Gorlin, Z. Chen, T. F. Jaramillo, Meso-structured platinum thin film: Active and stable electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134, 7758-7765 (2012) https://doi.org/10.1021/ja2120162
  23. L. Cademartiri, G.A. Ozin, Ultrathin nanowires - A materials chemistry perspective, Advanced Materials, 21, 1013-1020 (2009) https://doi.org/10.1002/adma.200801836
  24. J.T. Zhang, C.M. Li, Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems, Chemical Society Reviews, 41, 7016-7031 (2012) https://doi.org/10.1039/c2cs35210a
  25. C. Koenigsmann, W.-p. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires, Nano Letters, 10, 2806-2811 (2010) https://doi.org/10.1021/nl100718k
  26. C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells, Energy & Environmental Science, 4, 1161-1176 (2016)
  27. H. Tang, Z. Qi, M. Ramani and J. F. Elter, PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode, Journal of Power Sources, 158, 1306-1312 (2006) https://doi.org/10.1016/j.jpowsour.2005.10.059
  28. K. K. Tintula, A. Jalajakshi, A. K. Sahu, S. Pitchumani, P. Sridhar, A. K. Shukla Durability of Pt/C and Pt/MC-PEDOT Catalysts under Simulated Start-stop Cycles in Polymer Electrolyte Fuel cells, Fuel Cells, 13, 158-166 (2013) https://doi.org/10.1002/fuce.201200158
  29. J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schith, K. J. J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein Journal of Nanotechnol, 5, 44 - 67 (2014) https://doi.org/10.3762/bjnano.5.5
  30. W.C. Choi, S.I. Woo, Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell, Journal of Power Sources, 124, 420-425 (2003) https://doi.org/10.1016/S0378-7753(03)00812-7
  31. G.Y. Zhao, C.L. Xu, D.J. Guo, H. Li, H.L. Li, Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation, Applied Surface Science, 253, 3242-3246 (2007) https://doi.org/10.1016/j.apsusc.2006.07.015
  32. L.X. Ding, G.R. Li, Z.L. Wang, Z.Q. Liu, H. Liu, Y.X. Tong, Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation, Chemistry-A European Journal, 18, 8386-8391 (2012) https://doi.org/10.1002/chem.201200009
  33. S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, W.B. Kim, Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation, Electrochimica Acta, 53, 5804-5811 (2008) https://doi.org/10.1016/j.electacta.2008.03.041
  34. Y. Lee, J. Kim, D.S. Yun, Y.S. Nam, Y. Shao-Horn, A.M. Belcher, Virus-templated Au and Au-Pt coreshell nanowires and their electrocatalytic activities for fuel cell applications, Energy & Environmental Science, 5, 8328-8334 (2012) https://doi.org/10.1039/c2ee21156d
  35. X.F. Lu, C. Wang, Y. Wei, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications, Small, 5 2349-2370 (2009) https://doi.org/10.1002/smll.200900445
  36. S. Du, Pt-based nanowires as electrocatalysts in proton exchange fuel cells, International Journal of Low-Carbon Technologies, 7, 44-54 (2012) https://doi.org/10.1093/ijlct/ctr027
  37. A.C. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chemical Reviews, 110, 3767-3804 (2010) https://doi.org/10.1021/cr9003902
  38. Y. Liu, D.G. Li, S.S. Sun, Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications, Journal of Materials Chemistry, 21, 12579-12587 (2011) https://doi.org/10.1039/c1jm11605c
  39. M.L. Calegaro, H.B. Suffredini, S.A.S. Machado, L.A. Avaca, Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol-gel method, Journal of Power Sources, 156, 300-305 (2006) https://doi.org/10.1016/j.jpowsour.2005.06.015
  40. M.R. Gao, J. Jiang, S.H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR), Small, 8,13-27 (2012) https://doi.org/10.1002/smll.201101573
  41. S. Sun, D. Yang, G. Zhang, E. Sacher, J.P. Dodelet, Synthesis and characterization of platinum nanowire-carbon nanotube heterostructures, Chemistry of Materials, 19, 6376-6378 (2007) https://doi.org/10.1021/cm7022949
  42. W.J. Khudhayer, N.N. Kariuki, X.P. Wang, D.J. Myers, A.U. Shaikh, T. Karabacak, Oxygen reduction reaction electrocatalytic activity of glancing angle deposited Platinum nanorod arrays, Journal of the Electrochemical Society, 158, B1029-B1041 (2011) https://doi.org/10.1149/1.3599901
  43. J. Xu, G. Fu, Y. Tang, Y. Zhou, Y. Chen, T. Lu, One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions, Journal of Materials Chemistry, 22, 13585-13590 (2012) https://doi.org/10.1039/c2jm32012f
  44. Q. Xiao, M. Cai, M. Balogh, M. Tessema, Y. Lu, Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts, Nano Research, 5, 145-151 (2012) https://doi.org/10.1007/s12274-012-0191-8
  45. L.Y. Ruan, E.B. Zhu, Y. Chen, Z.Y. Lin, X.Q. Huang, X.F. Duan, Y. Huang, Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability, Angewandte Chemie-International Edition, 52, 12577-12581 (2013) https://doi.org/10.1002/anie.201304658
  46. A.B. Papandrew, R.W. Atkinson, G.A. Goenaga, S.S. Kocha, J.W. Zack, B.S. Pivovar, T.A. Zawodzinski, Oxygen reduction activity of vapor-grown platinum nanotubes, Journal of the Electrochemical Society, 160, F848-F852 (2013) https://doi.org/10.1149/2.090308jes
  47. S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions, Advanced Functional Materials, 20, 3742-3746 (2010) https://doi.org/10.1002/adfm.201001035
  48. S. Ci, J. Zou, G. Zeng, S. Luo, Z. Wen, Single crystalline Pt nanotubes with superior electrocatalytic stability, Journal of Materials Chemistry, 22, 16732-16737 (2012) https://doi.org/10.1039/c2jm32508j
  49. W.T. Yu, M.D. Porosoff, J.G.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts, Chemical Reviews, 112, 5780-5817 (2012) https://doi.org/10.1021/cr300096b
  50. C. Koenigsmann, M.E. Scofield, H. Liu, S.S. Wong, Designing enhanced one-dimensional electrocatalysts for the oxygen reduction reaction: probing size- and composition-dependent electrocatalytic behavior in noble metal nanowires, The Journal of Physical Chemistry Letters, 3, 3385-3398 (2012) https://doi.org/10.1021/jz301457h
  51. R. Carrera-Cerritos, V. Baglio, A.S. Arico, J. Ledesma-Garcia, M.F. Sgroi, D. Pullini, A.J. Pruna, D.B. Mataix, R. Fuentes-Ramirez, L.G. Arriaga, Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide, Applied Catalysis B: Environmental, 144, 554-560 (2014) https://doi.org/10.1016/j.apcatb.2013.07.057
  52. Z. Zhu, Y. Zhai, C. Zhu, Z. Wang, S. Dong, Bimetallic alloy nanowires and nanosponges: A comparative study of peroxidase mimetics and as enhanced catalysts for oxygen reduction reaction, Electrochemistry Communications, 36, 22-25 (2013) https://doi.org/10.1016/j.elecom.2013.08.024
  53. Y.Z. Lu, Y.Y. Jiang, W. Chen, PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction, Nano Energy, 2, 836-844 (2013) https://doi.org/10.1016/j.nanoen.2013.02.006
  54. T.H. Yeh, C.W. Liu, H.S. Chen, K.W. Wang, Preparation of carbon-supported PtM (M = Au, Pd, or Cu) nanorods and their application in oxygen reduction reaction, Electrochemistry Communications, 31, 125-128 (2013) https://doi.org/10.1016/j.elecom.2013.03.025
  55. Y.C. Tseng, H.S. Chen, C.W. Liu, T.H. Yeh, K.W. Wang, The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods, Journal of Materials Chemistry A, 2, 4270-4275 (2014) https://doi.org/10.1039/C3TA14705C
  56. Z. Duan, G. Wang, A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe), Physical Chemistry Chemical Physics, 13, 20178-20187 (2011) https://doi.org/10.1039/c1cp21687b
  57. I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy & Environmental Science, 5, 6744-6762 (2012) https://doi.org/10.1039/c2ee03590a
  58. J.I. Shui, C. Chen, J.C.M. Li, Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction, Advanced Functional Materials, 21, 3357-3362 (2011) https://doi.org/10.1002/adfm.201100723
  59. Z. Zhang, M. Li, Z. Wu, W. Li, Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells, Nanotechnology, 22, 015602 (2011) https://doi.org/10.1088/0957-4484/22/1/015602
  60. S.J. Guo, D.G. Li, H.Y. Zhu, S. Zhang, N.M. Markovic, V.R. Stamenkovic, S.H. Sun, FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction, Angewandte Chemie-International Edition, 52, 3465-3468 (2013) https://doi.org/10.1002/anie.201209871
  61. N.N. Kariuki, W.J. Khudhayer, T. Karabacak, D.J. Myers, GLAD Pt-Ni alloy nanorods for oxygen reduction reaction, ACS Catalysis, 3, 3123-3132 (2012)
  62. S.W. Chou, J.J. Shyue, C.H. Chien, C.C. Chen, Y.Y. Chen, P.T. Chou, Surfactant-directed synthesis of ternary nanostructures: nanocubes, polyhedrons, octahedrons, and nanowires of PtNiFe. their shape-dependent oxygen reduction activity, Chemistry of Materials, 24, 2527-2533 (2012) https://doi.org/10.1021/cm301039a
  63. L.C. Liu, G. Samjeske, S. Takao, K. Nagasawa, Y. Lwasawa, Fabrication of PtCu and PtNiCu multinanorods with enhanced catalytic oxygen reduction activities, Journal of Power Sources, 253, 1-8 (2014) https://doi.org/10.1016/j.jpowsour.2013.12.028
  64. H.H. Li, C.H. Cui, S. Zhao, H.B. Yao, M.R. Gao, F.J. Fan, S.H. Yu, Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts, Advanced Energy Materials, 2, 1182-1187 (2012) https://doi.org/10.1002/aenm.201200207
  65. L. Liu, E. Pippel, Low-platinum- content quaternary PtCuCoNi nanotubes with markedly enhanced oxygen reduction activity, Angewandte Chemie International Edition, 50, 2729-2733 (2011) https://doi.org/10.1002/anie.201006644
  66. M. Oezaslan, F. Hasche, P. Strasser, Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes, The Journal of Physical Chemistry Letters, 4, 3273-3291 (2013) https://doi.org/10.1021/jz4014135
  67. S.J. Hwang, S.J. Yoo, J. Shin, Y.H. Cho, J.H. Jang, E. Cho, Y.E. Sung, S.W. Nam, T.H. Lim, S.C. Lee, S.K. Kim, Supported core@shell electrocatalysts for fuel cells: close encounter with reality, Scientific Reports, 3, 1309 (2013) https://doi.org/10.1038/srep01309
  68. S.M. Alia, K. Jensen, C. Contreras, F. Garzon, B. Pivovar, Y. Yan, Platinum coated copper nanowires and Platinum nanotubes as oxygen reduction electrocatalysts, ACS Catalysis, 3, 358-362 (2013) https://doi.org/10.1021/cs300664g
  69. S.M. Alia, K.O. Jensen, B.S. Pivovar, Y. Yan, Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts, ACS Catalysis, 2, 858-863 (2012) https://doi.org/10.1021/cs200682c
  70. C.W. Liu, Y.C. Wei, C.C. Liu, K.W. Wang, Pt-Au core/shell nanorods: preparation and applications as electrocatalysts for fuel cells, Journal of Materials Chemistry, 22, 4641-4644 (2012) https://doi.org/10.1039/c2jm16407h
  71. H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction, Journal of the American Chemical Society, 135, 7130-7133 (2013) https://doi.org/10.1021/ja403041g
  72. S. Guo, S. Zhang, D. Su, S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their eletrocatalysis for oxygen reduction reaction (2013)
  73. C. Koenigsmann, A.C. Santulli, E. Sutter, S.S. Wong, Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires, ACS Nano, 5, 7471-7487 (2011) https://doi.org/10.1021/nn202434r
  74. S.M. Alia, K. Duong, T. Liu, K. Jensen, Y. Yan, Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base, ChemSusChem, 1739-1744 (2014)
  75. F.J. Yu, W.Z. Zhou, R.M. Bellabarba, R.P. Tooze, One-step synthesis and shape-control of CuPd nanowire networks, Nanoscale, 6, 1093-1098 (2014) https://doi.org/10.1039/C3NR04223E
  76. Z. Zhang, K.L. More, K. Sun, Z. Wu, W. Li, Preparation and characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction, Chemistry of Materials, 23, 1570-1577 (2011) https://doi.org/10.1021/cm1034134
  77. W. Sun, A. Hsu, R.R. Chen, Palladium-coated manganese dioxide catalysts for oxygen reduction reaction in alkaline media, Journal of Power Sources, 196, 4491-4498 (2011) https://doi.org/10.1016/j.jpowsour.2011.01.031
  78. X.R. Li, X.L. Li, M.C. Xu, J.J. Xu, H.Y. Chen, Gold nanodendrities on graphene oxide nanosheets for oxygen reduction reaction, Journal of Materials Chemistry A, 2, 1697-1703 (2014) https://doi.org/10.1039/C3TA14276K
  79. C. Koenigsmann, E. Sutter, T.A. Chiesa, R.R. Adzic, S.S. Wong, Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions, Nano Letters, 12, 2013-2020 (2012) https://doi.org/10.1021/nl300033e
  80. Y.Z. Lu, Y.C. Wang, W. Chen, Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity, Journal of Power Sources, 196, 3033-3038 (2011) https://doi.org/10.1016/j.jpowsour.2010.11.119
  81. S. Liu, Z. Zhang, J. Bao, Y. Lan, W. Tu, M. Han, Z. Dai, Controllable synthesis of tetragonal and cubic phase $Cu_2Se$ nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction, The Journal of Physical Chemistry C, 117, 15164-15173 (2013) https://doi.org/10.1021/jp4044122
  82. Z. Yang, X.M. Zhou, H.G. Nie, Z. Yao, S.M. Huang, Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement, ACS Applied Materials & Interfaces, 3, 2601-2606 (2011) https://doi.org/10.1021/am200426q
  83. J.S. Lee, G.S. Park, H.I. Lee, S.T. Kim, R.G. Cao, M.L. Liu, J. Cho, Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions, Nano Letters, 11, 5362-5366 (2011) https://doi.org/10.1021/nl2029078
  84. T.N. Lambert, D.J. Davis, W. Lu, S.J. Limmer, P.G. Kotula, A. Thuli, M. Hungate, G.D. Ruan, Z. Jin, J.M. Tour, Graphene-Ni-${\alpha}$-MnO2 and -Cu-${\alpha}$-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction, Chemical Communications, 48, 7931-7933 (2012) https://doi.org/10.1039/c2cc32971a
  85. G. Tuci, C. Zafferoni, P. D'Ambrosio, S. Caporali, M. Ceppatelli, A. Rossin, T. Tsoufis, M. Innocenti, G. Giambastiani, Tailoring carbon nanotube N-dopants while designing metal-free electrocatalysts for the oxygen reduction reaction in alkaline medium, ACS Catalysis, 3, 2108-2111 (2013) https://doi.org/10.1021/cs400379h
  86. A. Zhao, J. Masa, W. Schuhmann, W. Xia, Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions, The Journal of Physical Chemistry C, 117, 24283-24291 (2013) https://doi.org/10.1021/jp4059438
  87. H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Direct atomiclevel insight into the active sites of a high-performance PGM-free ORR catalyst, Science, 357, 479-483 (2017) https://doi.org/10.1126/science.aan2255
  88. W.H. Lee, H. Kim, Electrocatalytic activity and durability study of carbon supported Pt nanodendrites in polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 38, 7126-7132 (2013) https://doi.org/10.1016/j.ijhydene.2013.04.002
  89. M.-T. Sung, M.-H. Chang, M.-H. Ho, Investigation of cathode electrocatalysts composed of electrospun Pt nanowires and Pt/C for proton exchange membrane fuel cells, Journal of Power Sources, 249, 320-326 (2014) https://doi.org/10.1016/j.jpowsour.2013.10.119
  90. B. Li, D.C. Higgins, Q.F. Xiao, D.J. Yang, C.M. Zhng, M. Cai, Z.W. Chen, J.X. Ma, The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack, Applied Catalysis B-Environmental, 162, 133-140 (2015) https://doi.org/10.1016/j.apcatb.2014.06.040
  91. M.K. Debe, Nanostructured thin film electrocatalysts for PEM fuel cells - A tutorial on the fundamental characteristics and practical properties of NSTF Catalysts, Tutorials on Electrocatalysis in Low Temperature Fuel Cells, 45, 47-68 (2012)
  92. S.F. Du, A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires, Journal of Power Sources, 195, 289-292 (2010) https://doi.org/10.1016/j.jpowsour.2009.06.091
  93. S.F. Du, B. Millington, B.G. Pollet, The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 36, 4386-4393 (2011) https://doi.org/10.1016/j.ijhydene.2011.01.014
  94. S.F. Du, B.G. Pollee, Catalyst loading for Pt-nanowire thin film electrodes in PEFCs, International Journal of Hydrogen Energy, 37, 17892-17898 (2012) https://doi.org/10.1016/j.ijhydene.2012.08.148
  95. S.F. Du, K.J. Lin, S.K. Malladi, Y.X. Lu, S.H. Sun, Q. Xu, R. Steinberger-Wilckens, H.S. Dong, Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells, Scientific Reports, 4, 6439 (2014)