DOI QR코드

DOI QR Code

Antimicrobial activity by Paenibacillus elgii DS381 and its antimicrobial substances against microbial residents on human skin and pathogenic bacteria

인간 피부 상재균과 병원성 세균에 대한 Paenibacillus elgii DS381과 그 항균물질의 항균활성

  • Lee, Da-Sol (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2018.05.15
  • Accepted : 2018.07.09
  • Published : 2018.09.30

Abstract

This study was carried out to evaluate effects of antimicrobial substances produced by isolated soil bacteria. Among two thousands of bacterial isolates Paenibacillus elgii DS381 exhibited high antimicrobial activities against several microbial residents on human skin and pathogenic bacteria. DS381 showed 15.3~26.0 mm inhibition zone diameter against all target bacteria and yeast in agar well diffusion test. Antimicrobial peptide produced by DS381 indicated low minimum inhibitory concentration (0.039-5.000 mg/ml). DS381 produced biosurfactant such as lipopeptide, and surface tension of culture supernatant of DS381 reduced from 60.0 to 40.3 mN/m. DS381 also showed $1.56{\pm}0.13U/ml$ of chitinase activity. These results suggest that Paenibacillus elgii DS381 may be utilized as an efficient biocontrol agent against some important human skin microbes and pathogenic bacteria.

이 연구는 분리된 토양 세균에 의해 생성된 항균물질의 효과를 평가하기 위해 수행되었다. 2000여개의 세균 분리주 중 Paenibacillus elgii DS381이 여러 인간 피부 상재균과 병원성 세균에 대해 높은 항균활성을 나타내었다. DS381 균주는 agar well diffusion test에서 모든 대상 세균과 효모에 대해 15.3~26.0 mm 직경의 저해대를 형성하였다. DS381이 생성한 항균 펩티드는 모든 대상 미생물에 낮은 최소저해농도 (0.039-5.000 mg/ml)를 나타내었다. DS381 균주는 lipopeptide 같은 생물계면활성제 생산을 나타내었는데, 배양 상등액의 표면장력을 60.0에서 40.3 mN/m으로 낮추었다. DS381은 또한 $1.56{\pm}0.13U/ml$의 chitinase 활성도 나타내었다. 이 결과들은 P. elgii DS381이 일부 중요한 인간 피부 상재균과 병원성 세균에 대한 효율적인 생물제어제로 사용될 수 있음을 가리킨다.

Keywords

References

  1. Al-Ani I, Zimmermann S, Reichlinga J, and Wink M. 2015. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi drug resistant microbial pathogens. Phytomedicine 22, 245-255. https://doi.org/10.1016/j.phymed.2014.11.019
  2. Alkotaini B, Anuar N, Kadhum AAH, and Sani AAA. 2014. Isolation and identification of a new intracellular antimicrobial peptide produced by Paenibacillus alvei AN5. World J. Microbiol. Biotechnol. 30, 1377-1385. https://doi.org/10.1007/s11274-013-1558-z
  3. Ansari A, Aman A, Siddiqui NN, Iqbal S, and Qader SA. 2012. Bacteriocin (BAC-IB17): Screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak. J. Pharma. Sci. 25, 195-201.
  4. Ayed HB, Maalej H, Hmidet N, and Nasri M. 2015. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Global Antimicrob. Resist. 3, 255-261. https://doi.org/10.1016/j.jgar.2015.07.001
  5. Behravan J, Bazzaz BSF, and Malaekeh P. 2005. Survey of bacteriological contamination of cosmetic creams in Iran. Int. J. Dermatol. 44, 482-485. https://doi.org/10.1111/j.1365-4632.2005.01963.x
  6. Binod P, Pusztahelyi T, Nagy V, Sandhya C, Szakacs G, Pocsi I, and Pandey A. 2005. Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enz. Microb. Technol. 36, 880-887. https://doi.org/10.1016/j.enzmictec.2004.12.031
  7. Budi SW, Van Tuinen D, Arnould C, Dumas-Gaudut E, Gianinazzi-Pearson V, and Gianinazzi S. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effect of antagonistic bacterium on cell wall integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15, 191-199. https://doi.org/10.1016/S0929-1393(00)00095-0
  8. Cochrane SA and Vederas JC. 2016. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 36, 4-31. https://doi.org/10.1002/med.21321
  9. Ghorbel B, Sellami-Kamoun A, and Nasri M. 2003. Stability studies of protease from Bacillus cereus BG1. Enz. Microb. Technol. 32, 513-518. https://doi.org/10.1016/S0141-0229(03)00004-8
  10. Guo Y, Huang E, Yuan C, Zhang L, and Yousefa AE. 2012. Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl. Environ. Microbiol. 24, 3156-3165.
  11. Jiang J, Shi B, Zhu D, Cai Q, Chen Y, Li J, Qi K, and Zhang M. 2012. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control 23, 338-344. https://doi.org/10.1016/j.foodcont.2011.07.027
  12. Kang BR, Kim YH, Nam HS, and Kim YC. 2017. Correlation between biosurfactants and antifungal activity of a biocontrol bacterium, Bacillus amyloliquefaciens LM11. Res. Plant Dis. 23, 177-185. https://doi.org/10.5423/RPD.2017.23.2.177
  13. Kim TW, Kim SM, Hwang YM, Kim C, Lee DW, Jun LJ, Jeong JB, Kim YO, Nam BH, and Lee KJ. 2018. Determination of mass culture method of marine-derived microorganism, Bacillus sp. 2-4 (KCCMI 11107p) with antimicrobial acitivity. J. Fish. Mar. Sci. Educ. 30, 123-131.
  14. Ku JE, Han HS, and Song JH. 2013. The recent trend of the natural preservative used in cosmetics. Asian. J. Beauty Cosmetol. 11, 835-844.
  15. Lee JH. 2017. Master's thesis. A study of microbiological contamination after use of lip makeup tester. Sookmyung Women's University, Seoul, Korea.
  16. Lim JH, Min BK, and Choi YK. 2001. Characterization of the bacterial cell wall lytic enzyme produced by Aspergillus sp. HCLF-4. Korean J. Microbiol. 37, 15-20.
  17. Lou Z, Wang H, Zhu S, Ma C, and Wang Z. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 76, 398-403.
  18. Lundov MD and Zachariae C. 2008. Recalls of microbiologically contaminated cosmetics in EU from 2005 to May 2008. Int. J. Cosmet. Sci. 30, 471-474. https://doi.org/10.1111/j.1468-2494.2008.00475.x
  19. Marco JLD, Valadares-Inglis MC, and Felix CR. 2003. Production of hydrolytic enzyme by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches broom of cocoa. 34, 33-38.
  20. Murugan G and Rengaswamy P. 2011. Isolation, screening and production of biosurfactant by Pseudomonas sp. isolated from mangrove forest soil using coconut oil cake as substrate. J. Basic Appl. Biol. 5, 251-257.
  21. Nagarajkumar M, Bhaskaran R, and Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  22. Nagpure A and Gupta RK. 2013. Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusniger. J. Basic Microbiol. 53, 429-439. https://doi.org/10.1002/jobm.201100648
  23. Naing KW, Lee YS, Nguyen XH, Jeong MH, Anees M, Oh BS, Cho J, Moon JH, and Kim KY. 2014. Isolation and characterization of an antimicrobial lipopeptide produced by Paenibacillus ehimensis MA2012. J. Basic Microbiol. 55, 857-868.
  24. Qiao N and Shao Z. 2013. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J. Appl. Microbiol. 108, 1207-1216.
  25. Rodrigues LR, Teixeira JA, van der Mei HC, and Oliveira R. 2006. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids. Surf. B Biointerfaces 49, 79-86. https://doi.org/10.1016/j.colsurfb.2006.03.003
  26. Sharma D and Saharan BS. 2014. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 698713.
  27. White IR and Groot AC. 2006. Cosmetics and skin care products, pp. 493-506. In Frosch PJ, Menn T, and Lepoittevin JP. (eds.), Contact Dermatitis, 4th ed. Springer, Berlin, Germany.
  28. Wong S, Street D, Delgado SI, and Klontz KC. 2000. Recalls of foods and cosmetics due to microbial contamination reported to the U.S. Food and Drug Administration. J . Food Protect. 63, 1113-1116. https://doi.org/10.4315/0362-028X-63.8.1113
  29. Wu XC, Shen XB, Ding R, Qian CD, Fang HH, and Li O. 2010. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiol. Lett. 310, 32-38. https://doi.org/10.1111/j.1574-6968.2010.02040.x
  30. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, and McInerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56, 339-347. https://doi.org/10.1016/j.mimet.2003.11.001
  31. Zou YY, Jung LS, Lee SH, Kim SK, Cho YJ, and Ahn JH. 2012. Enhanced antimicrobial activity of nisin in combination with allyl isothiocyanate against Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium and Shigella boydii. Int. J. Food Sci. Technol. 48, 324-333.