DOI QR코드

DOI QR Code

Effect of plasmid curing on the production of siderophore from glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W

글루탐산을 유일한 탄소 원과 질소 원으로 이용하는 Acinetobacter sp. B-W의 글루탐산으로부터의 시드로포어 생산에 미치는 플라스미드 제거 효과

  • Kim, Kyoung-Ja (Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Lee, Jae-Rim (Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Yang, Yong-Joon (Department of Plant and Food Science, Sangmyung University)
  • 김경자 (순천향대학교 생명시스템학과) ;
  • 이재림 (순천향대학교 생명시스템학과) ;
  • 양용준 (상명대학교 식물식품공학과)
  • Received : 2018.05.16
  • Accepted : 2018.08.17
  • Published : 2018.09.30

Abstract

Effect of plasmid curing of Acinetobacter sp. B-W on the production of siderophore from glutamic acid as both carbon and nitrogen sole sources was investigated. Plasmid cured mutant of strain B-W lost the ability to produce siderophore from glutamic acid at $28^{\circ}C$. Transformant E. coli $DH5{\alpha}$ harboring 20 kb plasmid, that was isolated from wild type of strain B-W produced siderophore from glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$, but, not at $36^{\circ}C$. Production of siderophore from glutamic acid by transformant E. coli $DH5{\alpha}$ was completely inhibited by $10{\mu}M\;FeCl_3$. In previous report, catechol nature of siderophore produced from glutamic acid by strain B-W was detected by Arnow test. The siderophore produced from glutamic acid by transformant E. coli $DH5{\alpha}$ was also catechol type. Rf value of siderophore produced from transformant E. coli $DH5{\alpha}$ grown in medium glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$ was 0.32 in butanol-acetic acid-water (12:3:5) as developing solvent. Rf value of the siderophore was the same with that of wild type of strain B-W. Thus a single plasmid of 20 kb seemed to be involved in the production of siderophore from glutamic acid.

플라스미드가 제거된 Acinetobacter sp. B-W 균주의 돌연변이체를 글루탐산을 유일한 탄소 원과 질소원으로 함유한 배지에 $28^{\circ}C$에서 배양한 결과 글루탐산으로부터의 시드로포어 생산이 억제되었다. B-W 원 균주의 20 kb 플라스미드를 가진 형질 전환체 대장균 $DH5{\alpha}$는 같은 조건의 배지에서 시드로포어를 생산하는 것으로 조사되었다. 그러나 $36^{\circ}C$에서는 형질 전환체 대장균 $DH5{\alpha}$의 시드로포어 생산이 강하게 억제되었으며, 돌연변이체 B-W 균주는 $28^{\circ}C$에서와 마찬가지로 $36^{\circ}C$에서도 시드로포어를 생산하지 못하였다. 형질 전환체로부터 생산된 시드로포어의 종류는 원 균주 B-W와 마찬가지로 Arnow 시험 결과 카테콜 형으로 조사되었으며, $10{\mu}M\;FeCl_3$를 첨가한 배지에서는 시드로포어 생산이 완전히 억제되었다. 형질전환체로부터 생산된 시드로포어의 TLC상에서의 Rf값은 butanol-acetic acid-water (12:3:5) 용매상에서 0.32로 원 균주 B-W에서 생산된 시드로포어와 같았다. 위와 같은 실험 결과로 글루탐산으로부터 생산된 시드로포어의 생합성에 관여하는 유전자들이 20 kb 플라스미드 상에 있는 것으로 추정되었다.

Keywords

References

  1. Arnow LE. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 18, 531-537.
  2. Chen Q, Actis LA, Tolmasky ME, and Crosa JH. 1994. Chromosome-mediated 2,3-dihydroxybenzoic acid is a precursor in the biosynthesis of the plasmid-mediated siderophore anguibactin in Vibrio anguillarum. J. Bacteriol. 176, 4226-4234. https://doi.org/10.1128/jb.176.14.4226-4234.1994
  3. Cogswell RL and Weinberg ED. 1980. Temperature restriction of iron acquisition in Proteus vulgaris. Microbios Lett. 15, 69-71.
  4. Driss F, Tounsi S, and Jaoua S. 2011. Relationship between plasmid loss and gene expression in Bacillus thuringiensis. Curr. Microbiol. 62, 1287-1293. https://doi.org/10.1007/s00284-010-9857-1
  5. Garibaldi JA. 1972. Influence of temperature on the biosynthesis of iron transport compounds by Salmonella Typhimurium. J. Bacteriol. 110, 262-265.
  6. Garner BL, Arceneaux JE, and Byers BR. 2004. Temperature control of a 3, 4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr. Microbiol. 49, 89-94.
  7. Gonzalez JM, Dulmage HT, and Carlton BC. 1981. Correlation between specific plasmids and ${\delta}$-endotoxin production in Bacillus thuringiensis. Plasmid 5, 351-365. https://doi.org/10.1016/0147-619X(81)90010-X
  8. Gunka K and Commichau FM. 2012. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol. Microbiol. 85, 213-224. (See comment in PubMed Commons below) https://doi.org/10.1111/j.1365-2958.2012.08105.x
  9. Hider RC and Kong XL. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637-657. https://doi.org/10.1039/b906679a
  10. Kim KJ, Jang JH, and Yang YJ. 2017. Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W. Korean J. Microbiol. 53, 254-259.
  11. Kim KJ, Kim JW, and Yang YJ. 2016. Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W. Korean J. Microbiol. 52, 254-259. https://doi.org/10.7845/kjm.2016.6043
  12. Kim KJ, Lee JH, and Yang YJ. 2015. Temperature dependent 2, 3-dihydroxybenzoic acid production in Acinetobacter sp. B-W. Korean J. Microbiol. 51, 249-255. https://doi.org/10.7845/kjm.2015.5033
  13. Maniatis T, Fritsch EF, and Sam brook J. 1989. Molecular cloning: A laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  14. Meyer JM, Neely A, Stintzi A, Georges C, and Holder IA. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518-523.
  15. Milagres AMF, Machuca A, and Napoleao D. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome Azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1-6. https://doi.org/10.1016/S0167-7012(99)00028-7
  16. Neilands JB. 1984. Methodology of siderophores. Struct. Bonding 58, 1-24.
  17. O'Brien IG, Cox GB, and Gibson F. 1970. Biologically active compounds containing 2, 3-dihydroxybenzoic acid and serine formed by Escherichia coli. Biochim. Biophys. Acta 20, 453-460.
  18. Payne S. 1994. Detection, isolation and characterization of siderophores. In Methods in enzymology, Academic Press, Inc. NY. 235, 329-344.
  19. Rogers HJ. 1973. Iron-binding catechols and virulence in Escherichia coli. Infect. Immun. 7, 445-456.
  20. Schwyn R and Neiland JB. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  21. Sonenshein AL. 2007. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5, 917-927. https://doi.org/10.1038/nrmicro1772
  22. Wandersman C and Delepelaire P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611-647. https://doi.org/10.1146/annurev.micro.58.030603.123811
  23. Worsham PL and Konisky J. 1984. Effect of growth temperature on the acquisition of iron by Salmonella Typhimurium. J. Bacteriol. 158, 163-168.
  24. Zurkowski W and Lorkiewcz Z. 1978. Effective method for the isolation of non-nodulation mutants of Rhizobium trifolii. Genet. Res. 32, 311-314. https://doi.org/10.1017/S0016672300018814