References
- Arnow LE. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 18, 531-537.
- Chen Q, Actis LA, Tolmasky ME, and Crosa JH. 1994. Chromosome-mediated 2,3-dihydroxybenzoic acid is a precursor in the biosynthesis of the plasmid-mediated siderophore anguibactin in Vibrio anguillarum. J. Bacteriol. 176, 4226-4234. https://doi.org/10.1128/jb.176.14.4226-4234.1994
- Cogswell RL and Weinberg ED. 1980. Temperature restriction of iron acquisition in Proteus vulgaris. Microbios Lett. 15, 69-71.
- Driss F, Tounsi S, and Jaoua S. 2011. Relationship between plasmid loss and gene expression in Bacillus thuringiensis. Curr. Microbiol. 62, 1287-1293. https://doi.org/10.1007/s00284-010-9857-1
- Garibaldi JA. 1972. Influence of temperature on the biosynthesis of iron transport compounds by Salmonella Typhimurium. J. Bacteriol. 110, 262-265.
- Garner BL, Arceneaux JE, and Byers BR. 2004. Temperature control of a 3, 4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr. Microbiol. 49, 89-94.
-
Gonzalez JM, Dulmage HT, and Carlton BC. 1981. Correlation between specific plasmids and
${\delta}$ -endotoxin production in Bacillus thuringiensis. Plasmid 5, 351-365. https://doi.org/10.1016/0147-619X(81)90010-X - Gunka K and Commichau FM. 2012. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol. Microbiol. 85, 213-224. (See comment in PubMed Commons below) https://doi.org/10.1111/j.1365-2958.2012.08105.x
- Hider RC and Kong XL. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637-657. https://doi.org/10.1039/b906679a
- Kim KJ, Jang JH, and Yang YJ. 2017. Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W. Korean J. Microbiol. 53, 254-259.
- Kim KJ, Kim JW, and Yang YJ. 2016. Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W. Korean J. Microbiol. 52, 254-259. https://doi.org/10.7845/kjm.2016.6043
- Kim KJ, Lee JH, and Yang YJ. 2015. Temperature dependent 2, 3-dihydroxybenzoic acid production in Acinetobacter sp. B-W. Korean J. Microbiol. 51, 249-255. https://doi.org/10.7845/kjm.2015.5033
- Maniatis T, Fritsch EF, and Sam brook J. 1989. Molecular cloning: A laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
- Meyer JM, Neely A, Stintzi A, Georges C, and Holder IA. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518-523.
- Milagres AMF, Machuca A, and Napoleao D. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome Azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1-6. https://doi.org/10.1016/S0167-7012(99)00028-7
- Neilands JB. 1984. Methodology of siderophores. Struct. Bonding 58, 1-24.
- O'Brien IG, Cox GB, and Gibson F. 1970. Biologically active compounds containing 2, 3-dihydroxybenzoic acid and serine formed by Escherichia coli. Biochim. Biophys. Acta 20, 453-460.
- Payne S. 1994. Detection, isolation and characterization of siderophores. In Methods in enzymology, Academic Press, Inc. NY. 235, 329-344.
- Rogers HJ. 1973. Iron-binding catechols and virulence in Escherichia coli. Infect. Immun. 7, 445-456.
- Schwyn R and Neiland JB. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Sonenshein AL. 2007. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5, 917-927. https://doi.org/10.1038/nrmicro1772
- Wandersman C and Delepelaire P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611-647. https://doi.org/10.1146/annurev.micro.58.030603.123811
- Worsham PL and Konisky J. 1984. Effect of growth temperature on the acquisition of iron by Salmonella Typhimurium. J. Bacteriol. 158, 163-168.
- Zurkowski W and Lorkiewcz Z. 1978. Effective method for the isolation of non-nodulation mutants of Rhizobium trifolii. Genet. Res. 32, 311-314. https://doi.org/10.1017/S0016672300018814