DOI QR코드

DOI QR Code

New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics

  • Anshar, Muhammad (Department of Mechanical Engineering, State Polytechnic of Ujung Pandang) ;
  • Tahir, Dahlang (Department of Physics, Hasanuddin University) ;
  • Makhrani, Makhrani (Department of Physics, Hasanuddin University) ;
  • Ani, Farid Nasir (Department of Thermodynamics and Fluid Mechanics, Universiti Teknologi Malaysia) ;
  • Kader, Ab Saman (Marine Technology Centre, Universiti Teknolgi Malaysia)
  • 투고 : 2017.07.26
  • 심사 : 2018.02.06
  • 발행 : 2018.09.30

초록

We developed new composites by combining the solid waste from Low-Density Polyethylene in the form of plastic bag (PB) and biomass from rice husk (RH),in the form of $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)), as alternative fuels for electrical energy sources, and for providing the best solution to reduce environmental pollution. Elemental compositions were obtained by using proximate analysis, ultimate analysis, and X-ray fluorescence spectroscopy, and the thermal characteristics were obtained from thermogravimetric analysis. The compositions of carbon and hydrogen from the ultimate analysis show significant increases of 20-30% with increasing PB in the composite. The activation energy for RH is 101.22 kJ/mol; for x = 0.9 and 0.7, this increases by 4 and 6 magnitude, respectively, and for x = 0.5, shows remarkable increase to 165.30 kJ/mol. The range of temperature of about $480-660^{\circ}C$ is required for combustion of the composites $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)) to perform the complete combustion process and produce high energy. In addition, the calorific value was determined by using bomb calorimetry, and shows value for RH of 13.44 MJ/kg, which increases about 30-40% with increasing PB content, indicating that PB has a strong effect of increasing the energy realized to generate electricity.

키워드

참고문헌

  1. Qodri FE, Widodo WP, Mahmud S, Akhmad H. An assessment of Indonesia's energy security index and comparison with seventy countries. Energy 2016;111:364-376. https://doi.org/10.1016/j.energy.2016.05.100
  2. Tobias SS, Nicola UB, Ratri SW. Attracting private investments into rural electrification - A case study on renewable energy based village grids in Indonesia. Energy Sust. Dev. 2013;17:581-595. https://doi.org/10.1016/j.esd.2013.10.001
  3. Friederich MC, Moore TA, Flores RM. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: Why does Indonesia have such extensive coal deposits? Int. J. Coal Geol. 2016;166:2-35. https://doi.org/10.1016/j.coal.2016.06.013
  4. Anshar M, Kader AS, Ani FN. The utilization potential of rice husk as an alternative energy source for power plants in Indonesia. Adv. Mater. Res. 2014;845:494-498.
  5. Nicola UB, Ratri SW, Tobias SS. Rural electrification through village grids - Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia. Renew. Sust. Energy Rev. 2013;22:482-496. https://doi.org/10.1016/j.rser.2013.01.049
  6. Zhao B, Li BX. The effect of sodium chloride on the pyrolysis of rice husk. Appl. Energ. 2016;178:346-352. https://doi.org/10.1016/j.apenergy.2016.06.082
  7. Al-Amsyar SM, Adam F, Eng-Poh N. Aluminium oxide-silica/ carbon composites from rice husk as a bi-functional heterogeneous catalyst for the one-pot sequential reaction in the conversion of glucose. Surface. Interface. 2017;9:1-8. https://doi.org/10.1016/j.surfin.2017.06.011
  8. Touhami D, Zhu Z, Balan WS, Janaun J, Haywood S, Zein SH. Characterization of rice husk-based catalyst prepared via conventional and microwave carbonization. J. Environ. Chem. Eng. 2017;5:2388-2394. https://doi.org/10.1016/j.jece.2017.04.020
  9. Budarin VL, Zhao Y, Gronnow MJ, et al. Microwave-mediated pyrolysis of macro-algae. Green Chem. 2011;13:2330. https://doi.org/10.1039/c1gc15560a
  10. Chen WH, Ye SC, Sheen HK. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl. Energ. 2012;93:237-244. https://doi.org/10.1016/j.apenergy.2011.12.014
  11. Zhu Z, Macquarrie DJ, Simister R, Gomez LD, Mason SJM. Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes. Sust. Chem. Process. 2015;3:1-13. https://doi.org/10.1186/s40508-015-0027-4
  12. Madhiyanon T, Sathitruangsak P, Soponronnarit S. Co-combustion of rice husk with coal in a cyclonic fluidized-bed combustor ($\psi$-FBC). Fuel 2009;88:132-138. https://doi.org/10.1016/j.fuel.2008.08.008
  13. Kapur T, Kandpal TC, Garg HP. Electricity generation from rice husk in Indian rice mills: Potential and financial viability. Biomass Bioenerg. 1996;10:393-403. https://doi.org/10.1016/0961-9534(95)00116-6
  14. Liu J, Wang S, Wei Q, Yan S. Present situation, problems and solutions of China's biomass power generation industry. Energ. Policy 2014;70:144-151. https://doi.org/10.1016/j.enpol.2014.03.028
  15. Aretha A, Tetsuo T, Gert S. Inorganic and hazardous solid waste management: Current status and challenges for Indonesia. Procedia Environ. Sci. 2013;17:640-647. https://doi.org/10.1016/j.proenv.2013.02.080
  16. Yeny D, Yulinah T, Sony S. Community participation in household solid waste reduction in Surabaya, Indonesia. Resour. Conserv. Recy. 2015;102:153-152. https://doi.org/10.1016/j.resconrec.2015.06.013
  17. Lino FAM, Ismail KAR. Analysis of the potential of municipal solid waste in Brazil. Environ. Dev. 2012;4:105-113. https://doi.org/10.1016/j.envdev.2012.08.005
  18. Zhou C, Fang W, Xu W, Cao A, Wang R. Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J. Clean. Prod. 2014;80:80-86. https://doi.org/10.1016/j.jclepro.2014.05.083
  19. Wong SL, Ngadi N, Abdullah TAT, Inuwa IM. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sust. Energ. Rev. 2015;50:1167-1180. https://doi.org/10.1016/j.rser.2015.04.063
  20. Tabasova A, Kropac J, Kermes V, Nemet A, Stehlik P. Waste-to-energy technologies: Impact on environment. Energy 2012;44:146-155. https://doi.org/10.1016/j.energy.2012.01.014
  21. Othman MR, Martunus, Zakaria R, Fernando WJN. Strategic planning on carbon capture from coal-fired plants in Malaysia and Indonesia: A review. Energ. Policy 2009;37:1718-1735. https://doi.org/10.1016/j.enpol.2008.12.034
  22. Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I. Kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 2013;131:40-46. https://doi.org/10.1016/j.biortech.2012.12.136
  23. Xie Z, Ma X. The thermal behavior of the co-combustion between paper sludge and rice straw. Bioresour. Technol. 2013;146:611-618. https://doi.org/10.1016/j.biortech.2013.07.127
  24. Hiloidhari M, Baruah DC. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renew. Sust. Energ. Rev. 2011;15:1885-1892. https://doi.org/10.1016/j.rser.2010.12.010
  25. Hiloidhari M, Baruah DC. Rice straw residue biomass potential for decentralized electricity generation: A GIS-based study in Lakhimpur district of Assam, India. Energ. Sust. Dev. 2011;15:214-222. https://doi.org/10.1016/j.esd.2011.05.004
  26. Maiti S, Dey S, Purakayastha S, Ghosh B. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Bioresour. Technol. 2006;97:2065-2070. https://doi.org/10.1016/j.biortech.2005.10.005
  27. Shen J, Zhu S, Liu X, Zhang H, Tan J. Measurement of heating value of rice husk by using oxygen bomb calorimeter with benzoic acid as combustion adjuvant. Energy Procedia 2012;17:208-213. https://doi.org/10.1016/j.egypro.2012.02.085
  28. Chakraverty A, Mishra P, Banerjee HD. Investigation of thermal decomposition of rice husk. Thermochim. Acta 1985;94: 267-275. https://doi.org/10.1016/0040-6031(85)85270-9
  29. Hanna SB, Farag LM. Kinetic studies on thermal degradation of treated and untreated rice husk. Thermochim. Acta 1985;87:239-247. https://doi.org/10.1016/0040-6031(85)85341-7
  30. James J, Rao MS. Silica from rice husk through thermal decomposition. Thermochim. Acta 1986;97:329-336. https://doi.org/10.1016/0040-6031(86)87035-6
  31. Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim. Acta 2003;406:1-7. https://doi.org/10.1016/S0040-6031(03)00222-3
  32. Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim. Acta 2008;472:55-63. https://doi.org/10.1016/j.tca.2008.03.015
  33. Shen DK, Gua S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal degradation of woods in an oxidative environment. Fuel 2009;88:1024-1030. https://doi.org/10.1016/j.fuel.2008.10.034
  34. Chin BLF, Yusup S, Shoaibi AA, Kannan P, Srinivasakannan C, Sulaiman SA. Kinetic studies of co-pyrolysis of rubber seed shell with high-density polyethylene. Energ. Convers. Manage. 2014;87:746-753. https://doi.org/10.1016/j.enconman.2014.07.043
  35. Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour. Technol. 2012;118:382-389. https://doi.org/10.1016/j.biortech.2012.04.081
  36. Boxiong S, Qinlei. Study on MSW catalytic combustion by TGA. Energ. Convers. Manage. 2006;47:1429-1437. https://doi.org/10.1016/j.enconman.2005.08.016
  37. Leroy V, Cancellieri D, Leonib E, Rossib JL. Kinetic study of forest fuels by TGA: Model-free kinetic approach for the prediction of phenomena. Thermochim. Acta 2010;497:1-6. https://doi.org/10.1016/j.tca.2009.08.001
  38. Aboyade AO, Hugo TJ, Carrier M, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim. Acta 2011;517:81-89. https://doi.org/10.1016/j.tca.2011.01.035
  39. Shen J, Zhu S, Liu X, Zhang H, Tan J. The prediction of elemental composition of biomass based on proximate analysis. Energ. Convers. Manage. 2010;51:983-987. https://doi.org/10.1016/j.enconman.2009.11.039
  40. Rozainee M, Ngo SP, Salema AA, Tan KG. Computational fluid dynamics modeling of rice husk combustion in a fluidized bed combustor. Powder Technol. 2010;203:331-347. https://doi.org/10.1016/j.powtec.2010.05.026
  41. Ghani WA, Alias AB, Savory RM, Cliffe KR. Co-combustion of agricultural residues with coal in a fluidized bed combustor. Waste Manage. 2009;29:767-773. https://doi.org/10.1016/j.wasman.2008.03.025
  42. Kuprianov VI, Janvijitsakul K, Permchart W. Co-firing of sugar cane bagasse with rice husk in a conical fluidized-bed combustor. Fuel 2006;85:434-442. https://doi.org/10.1016/j.fuel.2005.08.013
  43. Nhuchhen DR. Prediction of carbon, hydrogen, and oxygen composition of raw and terrified biomass using proximate analysis. Fuel 2016;180:348-358. https://doi.org/10.1016/j.fuel.2016.04.058
  44. Klasson KT. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass Bioenerg. 2017;96:50-58. https://doi.org/10.1016/j.biombioe.2016.10.011
  45. Majumder AK, Jain R, Banerjee P, Brnwal IP. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 2008;87:3077-3081. https://doi.org/10.1016/j.fuel.2008.04.008
  46. Kumar S, Singh RK. Pyrolysis kinetics of waste high-density polyethylene using thermogravimetric analysis. Int. J. Chem. Tech. Res. 2014;6:131-137.
  47. Adrados A, de Marco I, Caballero BM, Lopez A, Laresgoiti MF, Torres A. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manage. 2012;32:826-832. https://doi.org/10.1016/j.wasman.2011.06.016
  48. Chattopadhyay J, Kim C, Kim R, Pak D. Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastic. Korean J. Chem. Eng. 2008;25:1047-1053. https://doi.org/10.1007/s11814-008-0171-6
  49. NPL National Physics Laboratory. Calorific values of solid, liquid and gaseous fuels [Internet]. E.F.G. Herington: NPL National Physics Laboratory; 1995 [cited 12 December 2017]. Available from: http://www.kayelaby.npl.co.uk/chemistry/3_11/3_11_4.html.
  50. Tsuchiya Y, Yoshida T. Pelletization of brown coal and rice bran in Indonesia: Characteristics of the mixture pellets including safety during transportation. Fuel Process. Technol. 2017;156:68-71. https://doi.org/10.1016/j.fuproc.2016.10.009
  51. Burgard DA, Bria CRM. Bridge-based sensing of $NO_x$ and $SO_2$ emissions from ocean-going ships. Atmos. Environ. 2016;136:54-60. https://doi.org/10.1016/j.atmosenv.2016.04.014
  52. Sung Y, Lee S, Kim C, et al. Synergistic effect of co-firing woody biomass with coal on $NO_x$ reduction and burnout during air-staged combustion. Exp. Therm. Fluid Sci. 2016;71:114-125. https://doi.org/10.1016/j.expthermflusci.2015.10.018
  53. Fan W, Li Y, Guo Q, Chen C, Wang Y. Coal-nitrogen release and $NO_x$ evolution in the oxidant-staged combustion of coal. Energy 2017;71:417-426.
  54. Andrew TT, Montserrat F. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products. Sci. Total Environ. 2017;584:982-989.

피인용 문헌

  1. Environmental impact of co-combustion of polyethylene wastes in a rice husks fueled plant: Evaluation of organic micropollutants and PM emissions vol.716, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2019.135354
  2. Wax Recovery from the Pyrolysis of Virgin and Waste Plastics vol.60, pp.22, 2018, https://doi.org/10.1021/acs.iecr.1c01176