DOI QR코드

DOI QR Code

Influence of hydraulic retention time on biogas production during leachate treatment

  • Baati, Souaad (Laboratory of Industrial Engineering, Faculty of Sciences and Technics) ;
  • Benyoucef, Fatima (Team of Applied Teledetection and SIG to Geosciences and Environment, Faculty of Sciences and Technics) ;
  • Makan, Abdelhadi (Team of Water and Environmental Management (G2E), National School of Applied Sciences (ENSAH), University Mohamed 1st) ;
  • El Bouadili, Abdelaziz (Laboratory of Industrial Engineering, Faculty of Sciences and Technics) ;
  • El Ghmari, Abderrahmene (Team of Applied Teledetection and SIG to Geosciences and Environment, Faculty of Sciences and Technics)
  • Received : 2017.12.02
  • Accepted : 2018.03.02
  • Published : 2018.09.30

Abstract

The main objective of this study is to investigate the influence of hydraulic retention time (HRT) on biogas production during leachate treatment using an anaerobic reactor type Upflow Anaerobic Sludge Blanket. For this purpose, four HRTs ranging from 12 to 48 h were experienced. The obtained results showed that higher amount of biogas could be produced during longer HRTs. However, HRTs longer than 48 h could not affect clearly the biogas generation and considered as unnecessary given the small additional amount of biogas produced during the degradation process. A volume of $0.434L/L_{leachate}/d$ was achieved during the treatment with a HRT of 48 h. The higher biogas production, the smaller chemical oxygen demand (COD) values achieved. Besides, COD removal and biogas production positively correlate, showing that the active biomass has degraded effectively the organic load to produce biogas. Moreover, all the analyzed physicochemical parameters have experienced a decrease after 48 h except for the pH, which increased to approximately neutral value. More precisely, a decrease of 93.8%, 89.7%, 95%, 70%, 77%, and 84.4% was recorded for COD, electrical conductivity, total suspended solid, turbidity, $NH_4{^+}-N$, and $NO_3{^-}-N$, respectively.

Keywords

References

  1. Makan A, Assobhei O, Mountadar M. Initial air pressure influence on in-vessel composting for the biodegradable fraction of municipal solid waste in Morocco. Int. J. Environ. Sci. Technol. 2014;11:53-58. https://doi.org/10.1007/s13762-013-0434-6
  2. Giz. Rapport sur la gestion des dechets solides au MAROC. Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH, Deutschland; 2014.
  3. Chofqi A, Younsi A, Lhadi E, Mania J, Mudry J, Veron A. Lixiviat de la decharge publique d'El Jadida (Maroc): Caracterisation et etude d'impact sur la nappe phreatique. Dechets Sci. Tech. 2007;46:4-10.
  4. Chtioui H, Khalil F, Souabi S, Aboulhassan M. Evaluation de la pollution generee par les lixiviats de la decharge publique de la ville de Fes. Dechets Sci. Tech. janvier 2008;49:25-28.
  5. Er-Raioui H, Bouzid S, Khannous S, Zouag MA. Contamination des eaux souterraines par le lixiviat des decharges publiques: Cas de la nappe phreatique R'Mel (Province de Larache-Maroc Nord-Occidental). Int. J. Biol. Chem. Sci. 2011;5:1118-1134.
  6. Abbou MB, El Haji M, Zemzami M, Fadil F. Impact des lixiviats de la decharge sauvage de la ville de Taza sur les ressources hydriques (Maroc). Afr. Sci. Rev. Int. Sci. Technol. 2014;10:171-180.
  7. El Bada N, Assobhei O, Kebbabi A, Mhamdi R, Mountadar M. Caracterisation et pretraitement du lixiviat de la decharge de la ville d'Azemmour. Dechets Sci. Tech. 2010;58:30-36.
  8. Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH. Xenobiotic organic compounds in leachates from ten Danish MSW landfills - Chemical analysis and toxicity tests. Water Res. 2004;38:3845-3858. https://doi.org/10.1016/j.watres.2004.07.006
  9. Bejgarn S, MacLeod M, Bogdal C, Breitholtz M. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 2015;132:114-119. https://doi.org/10.1016/j.chemosphere.2015.03.010
  10. Schwarzbauer J, Heim S, Brinker S, Littke R. Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res. 2002;36:2275-2287. https://doi.org/10.1016/S0043-1354(01)00452-3
  11. Trebouet D, Berland A, Schlumpf JP, Jaouen P, Quemeneur F. Traitement de lixiviats stabilises de decharge par des membranes de nanofiltration. Revue des Sciences de l'Eau/J. Water Sci. 1998;11:365-382.
  12. Foresti E. Perspectives on anaerobic treatment in developing countries. Water Sci. Technol. 2001;44:141-148.
  13. Garcia H, Rico J, Garcia PA. Comparison of anaerobic treatment of leachates from an urban-solid-waste landfill at ambient temperature and at 35${\circ}C$. Bioresour. Technol. 1996;58:273-277. https://doi.org/10.1016/S0960-8524(96)00114-9
  14. Sun H, Yang Q, Peng Y, Shi X, Wang S, Zhang S. Advanced landfill leachate treatment using a two-stage UASB-SBR system at low temperature. J. Environ. Sci. 2010;22:481-485. https://doi.org/10.1016/S1001-0742(09)60133-9
  15. Kettunen RH, Hoilijoki TH, Rintala JA. Anaerobic and sequential anaerobic-aerobic treatments of municipal landfill leachate at low temperatures. Bioresour. Technol. 1996;58:31-40. https://doi.org/10.1016/S0960-8524(96)00102-2
  16. Kettunen RH, Rintala JA. Performance of an on-site UASB reactor treating leachate at low temperature. Water Res. 1998;32:537-546. https://doi.org/10.1016/S0043-1354(97)00319-9
  17. Lin CY, Chang FY, Chang CH. Co-digestion of leachate with septage using a UASB reactor. Bioresour. Technol. 2000;73: 175-178. https://doi.org/10.1016/S0960-8524(99)00166-2
  18. Nkemka VN, Murto M. Biogas production from wheat straw in batch and UASB reactors: The roles of pretreatment and seaweed hydrolysate as a co-substrate. Bioresour. Technol. 2013;128:164-172. https://doi.org/10.1016/j.biortech.2012.10.117
  19. Montalvo S, San Martin J, Huilinir C, Guerrero L, Borja R. Assessment of a UASB reactor with high ammonia concentrations: Effect of zeolite addition on process performance. Process Biochem. 2014;49:2220-2227. https://doi.org/10.1016/j.procbio.2014.09.011
  20. Couras CS, Louros VL, Grilo AM, et al. Effects of operational shocks on key microbial populations for biogas production in UASB (Upflow Anaerobic Sludge Blanket) reactors. Energy 2014;73:866-874. https://doi.org/10.1016/j.energy.2014.06.098
  21. Kaparaju P, Serrano M, Angelidaki I. Optimization of biogas production from wheat straw stillage in UASB reactor. Appl. Energ. 2010;87:3779-3783. https://doi.org/10.1016/j.apenergy.2010.06.005
  22. Benyoucef F, Makan A, El Ghmari A, Ouatmane A. Solid household waste characterization and fresh leachate treatment: Case of Kasba Tadla city, Morocco. Environ. Eng. Res. 2015;20:363-369. https://doi.org/10.4491/eer.2015.083
  23. Rodier J. L'analyse de l'eau - eaux naturelles, eaux residuaires, eau de mer. 9th ed. Paris, Dunod; 2009. p. 1365-1475.
  24. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008;150:468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077
  25. Vieira SMM, Garcia AD. Sewage treatment by UASB-reactor. Operation results and recommendations for design and utilization. Water Sci. Technol. 1992;25:143-157.
  26. Liu RR, Tian Q, Yang B, Chen JH. Hybrid anaerobic baffled reactor for treatment of desizing wastewater. Int. J. Environ. Sci. Technol. 2010;7:111-118. https://doi.org/10.1007/BF03326122
  27. Rajakumar R, Meenambal T, Banu JR, Yeom IT. Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. Int. J. Environ. Sci. Technol. 2011;8:149-158. https://doi.org/10.1007/BF03326204
  28. Nkemka VN, Murto M. Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J. Environ. Manage. 2010;91:1573-1579. https://doi.org/10.1016/j.jenvman.2010.03.004
  29. Zhang SJ, Liu NR, Zhang CX. Study on the performance of modified UASB process treating sewage. Adv. Mater. Res. 2013;610:2174-2178.
  30. Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M. Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. Int. J. Hydrogen Energ. 2013;38:2221-2229. https://doi.org/10.1016/j.ijhydene.2012.12.004
  31. Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sust. Energ. Rev. 2011;15:821-826. https://doi.org/10.1016/j.rser.2010.07.042
  32. Gerardi MH. The microbiology of anaerobic digesters. New York: John Wiley & Sons Inc.; 2003.
  33. Makan A, Assobhei O, Mountadar M. In-vessel composting under air pressure of organic fraction of municipal solid waste in Azemmour, Morocco. Water Environ. J. 2014;28:401-409.
  34. Rizvi H, Ahmad N, Abbas F, et al. Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arab. J. Chem. 2015;8:780-786. https://doi.org/10.1016/j.arabjc.2013.12.016
  35. Raghab SM, El Meguid AMA, Hegazi HA. Treatment of leachate from municipal solid waste landfill. HBRC J. 2013; 9:187-192. https://doi.org/10.1016/j.hbrcj.2013.05.007
  36. Iglesias JR, Castrillon Pelaez L, Maranon Maison E, Sastre Andres H. A comparative study of the leachates produced by anaerobic digestion in a pilot plant and at a sanitary landfill in Asturias, Spain. Waste Manage. Res. 2000;18:86-93. https://doi.org/10.1177/0734242X0001800110
  37. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV. Landfill leachate treatment methods: A review. Environ. Chem. Lett. 2006;4:51-61. https://doi.org/10.1007/s10311-005-0016-z
  38. Kennedy KJ, Lentz EM. Treatment of landfill leachate using sequenching batch and continuous flow up-flow anaerobic sludge blanket (UASB) reactors. Water Res. 2000;34:3640-3656. https://doi.org/10.1016/S0043-1354(00)00114-7
  39. Chen S, Sun DZ, Chung JS. Simultaneous removal of COD and ammonium from landfill leachate using anaerobic-aerobic moving-bed biofilm reactor system. Waste Manage. 2007;28:339-346.
  40. Fernandez-Nava Y, Maranon E, Soons J, Castrillon L. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour. Technol. 2008;99:7976-7981. https://doi.org/10.1016/j.biortech.2008.03.048