DOI QR코드

DOI QR Code

Label-Free Rapid and Simple Detection of Exonuclease III Activity with DNA-Templated Copper Nanoclusters

  • Received : 2018.05.11
  • Accepted : 2018.07.04
  • Published : 2018.09.28

Abstract

In this study, DNA-templated copper nanoclusters (DNA-CuNCs) were used to detect exonuclease III (Exo III) activity, which is important for the diagnosis and therapy of several diseases. The results of this study showed that Exo III was affected by the concentrations of magnesium ions and sodium ions, and its optimal conditions for cleavage were $5mM\;Mg^{2+}$ and less than $25mM\;Na^+$. With a blunt-end DNA, more than 98% of DNA was digested by Exo III. As expected, with two or four cytosines in the terminal position of a 4-base overhanging DNA such as 5'-GGCC-3' and 5'-CCCC-3', there was little cleavage by Exo III compared with a blunt-end DNA.

Keywords

References

  1. Gammon DB, Evans DH. 2009. The 3'- to -5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination. J. Virol. 83: 4236-4250. https://doi.org/10.1128/JVI.02255-08
  2. Song L, Chaudhuri M, Knopf CW, Parris DS. 2004. Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis. J. Biol. Chem. 279: 18535-18543. https://doi.org/10.1074/jbc.M309848200
  3. Shevelev LV, Huescher U. 2002. The 3' 5' exonucleases. Nat. Rev. Mol. Cell Biol. 3: 364-376. https://doi.org/10.1038/nrm804
  4. Wu X, Chen J, Zhao JX. 2014. Ultrasensitive detection of 3'-5' exonuclease enzymatic activity using molecular beacons, Analyst 139: 1081-1087. https://doi.org/10.1039/C3AN02040A
  5. Paul TT, Gellert M. 1998. The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1: 969-979. https://doi.org/10.1016/S1097-2765(00)80097-0
  6. Kavanagh D, Spitzer D, Kothari PH, Shaikh A, Liszewski MK, Richards A, Atkinson JP. 2008. New roles for the major human 3'-5' exonuclease TREX1 in human disease. Cell Cycle 7: 1718-1725. https://doi.org/10.4161/cc.7.12.6162
  7. Leung CH, Chan DS, Man BY, Wang CJ, Lam W, Cheng YC, Fong WF, et al. 2011. Simple and convenient G-quadruplex-based turn-on fluorescence assay for 3' ${\rightarrow}$ 5' exonuclease activity. Anal. Chem. 83: 463-466. https://doi.org/10.1021/ac1025896
  8. Brucet M, Querol-Audi J, Bertlik K, Lioberas J, Fita I, Celada A. 2008. Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases. Protein Sci. 17: 2059-2069. https://doi.org/10.1110/ps.036426.108
  9. Hoheisel JD. 1993. On the activities of Escherichia coli exonuclease III. Anal. Biochem. 209: 238-246. https://doi.org/10.1006/abio.1993.1114
  10. Chen Y, Yang CJ, Wu Y, Conlon P, Kim Y, Lin H, Tan W. 2008. Light-switching excimer beacon assays for ribonuclease H kinetic study. Chem. Biochem. 9: 355-359.
  11. Tan W, Wang K, Drake TJ. 2004. Molecular beacons. Curr. Opin. Chem. Biol. 8: 547-553. https://doi.org/10.1016/j.cbpa.2004.08.010
  12. Tang Z, Liu P, Ma C, Yang X, Wang K, Tan W, et al. 2011. Molecular beacon based bioassay for highly sensitive and selective detection of nicotinamide adenine dinucleotide and the activity of alanine aminotransferase. Anal. Chem. 83: 2505-2510. https://doi.org/10.1021/ac102742k
  13. Dai N, Kool ET. 2011. Fluorescent DNA-based enzyme sensors. Chem. Soc. Rev. 40: 5756-5770. https://doi.org/10.1039/c0cs00162g
  14. Wang XP, Yin BC, Ye BC. 2013. A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Adv. 3: 8633-8636. https://doi.org/10.1039/c3ra23296d
  15. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, et al. 2008. Oligonucleotide-stabilized Ag nanoclusters fluorophores. J. Am. Chem. Soc. 130: 5038-5039. https://doi.org/10.1021/ja8005644
  16. Yeh H, Sharma J, Han JJ, Martinez JS, Werner JH, 2010. A DNA-silver nanoclusters probe that fluoresces upon hybridization. Nano Lett. 10: 3106-3110. https://doi.org/10.1021/nl101773c
  17. Gwinn EG, Neill P, Guerrero A, Bouwmeester D, Fygenson DDK. 2008. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 20: 279-283. https://doi.org/10.1002/adma.200702380
  18. Ma K, Cui Q, Shao Y, Wu F, Xu S, Liu G, 2012. Emission modulation of DNA-templated fluorescent silver nanoclusters by divalent magnesium ion. J. Nanosci. Nanotechnol. 12: 861-869. https://doi.org/10.1166/jnn.2012.5665
  19. Xu H, Suslick KS. 2010. Water-soluble fluorescent silver nanoclusters. Adv. Mater. 22: 1078-1082. https://doi.org/10.1002/adma.200904199
  20. Han B, Wang E. 2011. Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosens. Bioelectron. 26: 2585-2589. https://doi.org/10.1016/j.bios.2010.11.011
  21. Jia X, Li J, Han L, Ren J, Yang X, Wang E. 2012. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 6: 3311-3317. https://doi.org/10.1021/nn3002455
  22. Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, et al. 2017. Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically-generated DNA as template. Microchim. Acta 184: 773-779. https://doi.org/10.1007/s00604-016-2065-3
  23. Zhao H, Dong J, Zhou F, Li B, 2017. One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators. Sens. Actuators B Chem. 238: 828-833. https://doi.org/10.1016/j.snb.2016.07.083
  24. Song Q, Shi Y, He D, Xu S, Ouyang J, 2015. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chem. Eur. J. 21: 2417-2422. https://doi.org/10.1002/chem.201405726
  25. Qing T, Qing Z, Mao Z, He X, Xu F, Wen L, et al. 2014. dsDNA-templated fluorescent copper nanoparticles: poly(AT-TA)-dependent formation. RSC Adv. 4: 61092-61095. https://doi.org/10.1039/C4RA11551A
  26. Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA. 1995. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374: 381-386. https://doi.org/10.1038/374381a0
  27. Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Ikehara M, et al. 1990. Three-dimensional structure of ribonuclease H from E. coli. Nature 347: 306-309. https://doi.org/10.1038/347306a0
  28. Black CB, Cowan JA, 1994. Magnesium activation of ribonuclease H. evidence for one catalytic metal ion. Inorg. Chem. 33: 5805-5808. https://doi.org/10.1021/ic00103a030
  29. Tomb JF, Barcak GJ. 1989. Regulating the 3'-5' activity of exonuclease III by varying the sodium chloride concentration. BioTechniques 7: 932-933.
  30. Ge J, Dong Z-Z, Bai D-M, Zhang L, Hu Y-L, Ji D-Y, et al, 2017. A novel label-free fluorescent molecular beacon for the detection of 30-50 exonuclease enzymaticactivity using DNA-templated copper nanoclusters. New J. Chem. 41: 9718-9723. https://doi.org/10.1039/C7NJ01761H
  31. Linxweiler W, Horz W, 1982. Sequence specificity of exonuclease III from E. coli. Nucleic Acids Res. 10: 4845-4859. https://doi.org/10.1093/nar/10.16.4845