DOI QR코드

DOI QR Code

Enhanced Piezoelectric Properties of (1-x)[0.675BiFeO3-0.325BaTiO3]-xLiTaO3 Ternary System by Air-Quenching

  • Akram, Fazli (School of Materials Science and Engineering, Changwon National University) ;
  • Malik, Rizwan Ahmed (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Soonil (School of Materials Science and Engineering, Changwon National University) ;
  • Pasha, Riffat Asim (Department of Metallurgy and Materials Engineering, UET Taxila) ;
  • Kim, Myong Ho (School of Materials Science and Engineering, Changwon National University)
  • Received : 2018.08.17
  • Accepted : 2018.08.31
  • Published : 2018.09.27

Abstract

Lead free $(1-x)(0.675BiFeO_3-0.325BaTiO_3)-xLiTaO_3$ (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% $MnO_2$ and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from $3.70{\mu}m$ to $1.82{\mu}m$ were obtained in the selected compositions ($0{\leq}x{\leq}0.03$) of BFBTLT system. The maximum temperatures ($T_{max}$) were mostly higher than $420^{\circ}C$ in the studied composition range. The maximum values of maximum polarization ($P_{max}{\approx}31.01{\mu}C/cm^2$), remnant polarization ($P_{rem}{\approx}22.82{\mu}C/cm^2$) and static piezoelectric constant ($d_{33}{\approx}145pC/N$) were obtained at BFBT-0.01LT composition with 0.6 mol% $MnO_2$ and 0.4 mol% CuO. This study demonstrates that the high $T_{max}$ and $d_{33}$ for BFBTLT ceramics are favorable for industrial applications.

Keywords

References

  1. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  2. J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  3. J. Lee, H. Oh and H. Lee, J. Korean Ceram. Soc., 53, 171 (2016). https://doi.org/10.4191/kcers.2016.53.2.171
  4. A. Hussain, A. Maqbool, R. A. Malik, J. U. Rahman, J. H. Lee, Y. S. Sung, T. K. Song and M. H. Kim, Ceram. Int., 43, S204 (2017). https://doi.org/10.1016/j.ceramint.2017.05.301
  5. R. A. Malik, A. Hussain, M. Acosta, J. Daniels, H. S. Han, M. H. Kim and J. S. Lee, J. Eur. Ceram. Soc., 38, 2511 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.01.010
  6. I. Sosnowska, T. P. Neumaier and E. Steichele, J. Phys. C., 15, 4835 (1982). https://doi.org/10.1088/0022-3719/15/23/020
  7. F. Akram, A. Hussain, R. A. Malik, T. K. Song, W. J. Kim, J. Lee and M. H. Kim, Ceram. Int., 43, S209 (2017). https://doi.org/10.1016/j.ceramint.2017.05.303
  8. R. A. Malik, A. Zaman, A. Hussaina, A. Maqbool, T. K. Song, W. J. Kim, Y. S. Sung and M. H. Kim, J. Eur. Ceram. Soc., 38, 2259 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.049
  9. Y. Wang and C. W. Nan, Appl. Phys. Lett., 89, 052903 (2006). https://doi.org/10.1063/1.2222242
  10. F. Akram, R. A. Malik, T. K. Song, W. J. Kim, J. Lee and M. H. Kim, Mater. Lett., 217, 16 (2018). https://doi.org/10.1016/j.matlet.2018.01.031
  11. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do and I. K. Jeong, Adv. Mater., 27, 6976 (2015). https://doi.org/10.1002/adma.201502424
  12. P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski, J. Phys. C., 13, 1931 (1980). https://doi.org/10.1088/0022-3719/13/10/012
  13. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science., 299, 1719 (2003). https://doi.org/10.1126/science.1080615
  14. N. Kumar, N. Panwar, B. Gahtori, N. Singh, H. Kishan and V. P. S. Awana, J. Alloys Compd., 501, L29 (2010). https://doi.org/10.1016/j.jallcom.2010.04.095
  15. G. H. Ryu, A. Hussain, M. H. Lee, R. A. Malik, T. K. Song, W. J. Kim and M. H. Kim, J. Eur. Ceram. Soc., 38, 4414 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.05.032
  16. C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Cheng, W. Li and H. Wang, Appl. Phys. Lett., 101, 032901 (2012). https://doi.org/10.1063/1.4736724
  17. T. Sebastian, I. Sterianou, I. M. Reaney, T. Leist, W. Jo and J. Rodel, J. Electroceram., 28, 95 (2012). https://doi.org/10.1007/s10832-012-9685-8
  18. C. Ederer and N. A. Spaldin, Phys. Rev. Lett., 95, 257601 (2005). https://doi.org/10.1103/PhysRevLett.95.257601
  19. S. O. Leontsev and R. E. Eitel, J. Mater. Res., 26, 9 (2011). https://doi.org/10.1557/jmr.2010.44
  20. D. S. Kim, J. S. Kim and C. I. Cheon, J. Korean Ceram. Soc., 53, 162 (2016). https://doi.org/10.4191/kcers.2016.53.2.162
  21. C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson and W. J. James, Solid State Commun., 7, 701 (1969). https://doi.org/10.1016/0038-1098(69)90597-3
  22. N. Itoh, T. Shimura, W. Sakamoto and T. Yogo, Ferroelectrics, 356, 19 (2007). https://doi.org/10.1080/00150190701508860
  23. J. S. Kim, C. I. Cheon, H. J. Kang and P. W. Jang, J. Eur. Ceram. Soc., 27, 3951 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.073
  24. H. Singh, A. Kumar and K. L. Yadav, Mater. Sci. Eng. B, 176, 540 (2011). https://doi.org/10.1016/j.mseb.2011.01.010
  25. J. S. Kim, C. I. Cheon, P. W. Jang, Y. N. Choi and C. H. Lee, J. Eur. Ceram. Soc., 24, 1551 (2004). https://doi.org/10.1016/S0955-2219(03)00557-0
  26. H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi and T. Takenaka, Ferroelectrics, 229, 273 (1999). https://doi.org/10.1080/00150199908224350
  27. C. I. Cheon, J. H. Choi, J. S. Kim, J. Zang, T. Fromling, J. Rodel and W. Jo, J. Appl. Phys., 119, 15410 (2016).
  28. Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 44, 5040 (2005). https://doi.org/10.1143/JJAP.44.5040
  29. X. Sun, J. Chen, R. Yu, X. Xing, L. Qiao, G. Liu, Sci. Technol. Adv. Mater., 9, 025004 (2008). https://doi.org/10.1088/1468-6996/9/2/025004
  30. X. Wu, L. Luo, N. Jiang, X. Wu and Q. Zheng, B. Mater. Sci., 39, 737 (2016). https://doi.org/10.1007/s12034-016-1198-7
  31. A. Prasatkhetragarna, P. Muangkonkada, P. Aommongkola, P. Jantaratana, N. Vittayakorn and R. Yimnirund, Ceram. Int., 39, S249 (2013). https://doi.org/10.1016/j.ceramint.2012.10.071
  32. I. Cheon, J. H. Choi, J. S. Kim, J. Zang, T. Frömling, J. Rödel and W. Jo, J. Appl. Phys., 119, 154101 (2016). https://doi.org/10.1063/1.4946844
  33. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li and H. Wang, J. Eur. Ceram. Soc., 33, 1177 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.019
  34. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. J. Kleebe, A. J. Bell and J. Rodel, J. Appl. Phys., 110, 074106 (2011). https://doi.org/10.1063/1.3645054
  35. R. Dittmer, W. Jo, J. Daniels, S. Schaab and J. Rodel, J. Am. Ceram. Soc., 94, 4283 (2011). https://doi.org/10.1111/j.1551-2916.2011.04631.x
  36. A. Hussain, A. Maqbool, R. A. Malik, J. U. Rahman, T. K. Song, W. J. Kim and M. H. Kim, Ceram. Int., 41, S26 (2015). https://doi.org/10.1016/j.ceramint.2015.03.188
  37. T. V. D. Ngoc, H. S. Han, K. J. Kim, R. A. Malik, A. Hussain and J. S. Lee, J. Ceram. Process. Res., 13, 177 (2012).
  38. L. E. Cross, Ferroelectrics, 76, 241 (1987). https://doi.org/10.1080/00150198708016945
  39. F. Kubel and H. Schmid, Acta. Crystallogr. B. Struct. Sci. Crust. Eng. Mater., 46, 698 (1990). https://doi.org/10.1107/S0108768190006887
  40. K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006). https://doi.org/10.1143/JJAP.45.4493
  41. E. M. Anton, W. Jo, D. Damjanovic and J. Rodel, J. Appl. Phys., 110, 094108 (2006).
  42. K. T. P. Seifert, W. Jo and J. Rodel, J. Am. Ceram. Soc., 93, 1392 (2010).
  43. N. Jiang, M. Tian, L. Luo, Q. Zheng, D. Shi, K. H. Lam, C. Xu and D. Lin, J. Electron. Mater., 45, 291 (2016). https://doi.org/10.1007/s11664-015-4062-4
  44. J. Chen and J. Cheng, J. Alloys Compd., 589, 115 (2014). https://doi.org/10.1016/j.jallcom.2013.11.169
  45. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang and W. Li, Mater. Res. Bull., 47, 4233 (2012). https://doi.org/10.1016/j.materresbull.2012.09.027
  46. D. Damjanovic, Rep. Prog. Phys., 61, 1267 (1998). https://doi.org/10.1088/0034-4885/61/9/002
  47. Y. Watanabe, Y. Hiruma, H. Nagata and T. Takenaka, Key Eng. Mater., 388, 229 (2009).
  48. A. Ullah, C. W. Ahn, R. A. Malik, J. S. Lee and I. W. Kim, J. Electroceram., 33, 187 (2014). https://doi.org/10.1007/s10832-014-9945-x
  49. Z. Yang, B. Liu, L. Wei and Y. Hou, Mater. Res. Bull., 43, 81 (2008). https://doi.org/10.1016/j.materresbull.2007.02.016
  50. A. Ullah, C. W. Ahn, K. B. Jang, A. Hussain and I. W. Kim, Ferroelectrics, 404, 167 (2010). https://doi.org/10.1080/00150193.2010.482490