DOI QR코드

DOI QR Code

Fabrication of Densified W-Ti by Reaction Treatment and Spark Plasma Sintering of WO3-TiH2 Powder Mixtures

WO3-TiH2 혼합분말의 반응처리 및 방전 플라스마 소결에 의한 W-Ti 치밀체 제조

  • Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Heun Joo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Han, Ju-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Yunju (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 강현지 (서울과학기술대학교 신소재공학과) ;
  • 김헌주 (서울과학기술대학교 신소재공학과) ;
  • 한주연 (서울과학기술대학교 신소재공학과) ;
  • 이윤주 (서울과학기술대학교 신소재공학과) ;
  • 정영근 (부산대학교 융합학부) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2018.08.03
  • Accepted : 2018.08.27
  • Published : 2018.09.27

Abstract

W-10 wt% Ti alloys that have a homogeneous microstructure are prepared by thermal decomposition of $WO_3-TiH_2$ powder mixtures and spark plasma sintering. The reduction and dehydrogenation behavior of $WO_3$ and $TiH_2$ are analyzed by temperature programmed reduction and a thermogravimetric method, respectively. The X-ray diffraction analysis of the powder mixture, heat-treated in an argon atmosphere, shows W- oxides and $TiO_2$ peaks. Conversely, the powder mixtures heated in a hydrogen atmosphere are composed of W, $WO_2$ and $TiO_2$ phases at $600^{\circ}C$ and W and W-rich ${\beta}$ phases at $800^{\circ}C$. The densified specimen by spark plasma sintering at $1500^{\circ}C$ in a vacuum using hydrogen-reduced $WO_3-TiH_2$ powder mixtures shows a Vickers hardness value of 4.6 GPa and a homogeneous microstructure with pure W, ${\beta}$ and Ti phases. The phase evolution dependent on the atmosphere and temperature is explained by the thermal decomposition and reaction behavior of $WO_3$ and $TiH_2$.

Keywords

References

  1. L. B. Jonsson, C. Hedlund, I. V. Katardjiev and S. Berg, Thin Solid Films, 348, 227 (1999). https://doi.org/10.1016/S0040-6090(99)00130-3
  2. W. Qingxiang, L. Shuhua, F. Zhikang and C. Xin, Int. J. Refract. Met. Hard Mater., 28, 576 (2010). https://doi.org/10.1016/j.ijrmhm.2010.04.004
  3. W. D. Klopp, J. Less-Common Met., 42, 261 (1975). https://doi.org/10.1016/0022-5088(75)90046-6
  4. E. Lassner and W. D. Schubert, Tungsten, Kluwer Academic/Plenum Publishers, New York, USA (1999).
  5. H. Jahangiri, S. Sonmez and M.L. Ovecoglu, Indian J. Mater. Sci., 2016, 1 (2016).
  6. L. J. Kecskes and I. W. Hall, Metall. Mater. Trans. A, 26, 2407 (1995). https://doi.org/10.1007/BF02671254
  7. Q. X. Wang, X. H. Wang, Y. Yang and Z. K. Fan, Int. J. Refract. Met. Hard Mater., 27, 847 (2009). https://doi.org/10.1016/j.ijrmhm.2009.03.004
  8. N.-Y. Kwon, Y.-K. Jeong and S.-T. Oh, J. Korean Powder Metall. Inst., 24, 384 (2017) (in Korean). https://doi.org/10.4150/KPMI.2017.24.5.384
  9. S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins, J. Catal., 37, 424 (1975). https://doi.org/10.1016/0021-9517(75)90179-7
  10. T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse, Metall. Mater. Trans. B, 7, 589 (1976). https://doi.org/10.1007/BF02698592
  11. V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama, Mater. Sci. Eng., A, 356, 190 (2003). https://doi.org/10.1016/S0921-5093(03)00117-5
  12. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Ohio, USA (1990).
  13. L. J. Kecskes and I. W. Hall, J. Mater. Process. Technol., 94, 247 (1999). https://doi.org/10.1016/S0924-0136(99)00077-1
  14. F. H. Froes, Titanium, p. 116, ASM International, Ohio, USA (2015).