DOI QR코드

DOI QR Code

Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels

등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성

  • Lee, Ji-Min (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Lee, Sang-In (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Lim, Hyeon-Seok (Department of Materials Science and Engineering Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
  • 이지민 (서울과학기술대학교 신소재공학과) ;
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 임현석 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2018.08.04
  • Accepted : 2018.09.05
  • Published : 2018.09.27

Abstract

This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

Keywords

References

  1. B. P. J. Sandvik and H. P. Nevalainen, Mater. Sci. Technol., 8, 213 (1981).
  2. H. K. D. H. Bhadeshia and D. V. Edmonds, Mater. Sci. Technol., 17, 411 (1983).
  3. F. G. Caballero, M. J. Santofimia, C. Garcia-Mateo, J. Chao and C. Garciade Andres, Mater. Des., 30, 2077 (2009). https://doi.org/10.1016/j.matdes.2008.08.042
  4. J. Chakraborty, D. Bhattacharjee and I. Mannaa, Scr. Mater., 59, 247 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.023
  5. J. J. Kalker, D. F. Cannon and O. Orringer, Rail Quality and Maintenance for Modern Railway Operation, p.454, Kluwer Academic, Alphen aan den Rijn, Netherlands (1993).
  6. P. Pointner, Wear, 265, 1373 (2008). https://doi.org/10.1016/j.wear.2008.03.015
  7. F. Zhang, Z. Yang and J. Kang, Journal of Yanshan University, 1, 2 (2013).
  8. H. Hu, G. Xu, M. Zhou and Q. Yuan, Met. Mater. Int., 23, 233 (2017). https://doi.org/10.1007/s12540-017-6407-4
  9. M. Zhou, G. Xu, H. Hu, Q. Yuan and J. Tian, Met. Mater. Int., 24, 28 (2018). https://doi.org/10.1007/s12540-017-7261-0
  10. J. Tian, G. Xu, Z. Jiang, H. Hu and M. Zhou, Met. Mater. Int., 29 April 2018 [Epub]. https://doi.org/10. 1007/s12540-018-0139-y.
  11. S. Zhang, P. Wang, D. Li and Y. Li, Mater. Des. 84, 385 (2015). https://doi.org/10.1016/j.matdes.2015.06.143
  12. C. Garcia-Mateo, F. G. Caballero, T. Sourmail, V. Smanio and C. G. Andres, Int. J. Mater. Res., 105, 725 (2014). https://doi.org/10.3139/146.111090
  13. C. Garcia-Mateo, T. Sourmail, F. G. Caballero, V. Smanio, M. Kuntz C. Ziegler, A. Leiro, E. Vuorinen, R. Elvira and T. Teeri, Mater. Sci. Tech., 30, 1071 (2014).
  14. Y. X. Zhou, X. T. Song, J. W. Liang, Y. F. Shen and R. D. K. Misra, Mater. Sci. Eng. A, 718, 267 (2018). https://doi.org/10.1016/j.msea.2018.01.120
  15. Y. F. Shen, L. N. Qiu, X. Sun, L. Zuo, P. K. Liaw and D. Raabe, Mater. Sci. Eng. A, 636, 551 (2015). https://doi.org/10.1016/j.msea.2015.04.030
  16. K. S. Choi, A. Soulami, W. N. Liu, X. Sun and M. A. Khaleel, Comput. Mater. Sci., 50, 720 (2010). https://doi.org/10.1016/j.commatsci.2010.10.002
  17. X. C. Xiong, B. Chen, M. X. Huang, J. F. Wang and L. Wang, Scr. Mater., 68, 321 (2013). https://doi.org/10.1016/j.scriptamat.2012.11.003
  18. M. Soliman and H. Palkowski, ISIJ Int., 47, 1703 (2007). https://doi.org/10.2355/isijinternational.47.1703
  19. H. Huang, M. Y. Sherif and P. E. J. Rivera-Diaz-del-Castillo, Acta Mater., 61, 1639 (2013). https://doi.org/10.1016/j.actamat.2012.11.040
  20. H. S. Lim, J. M. Lee, Y. B. Song, H. K. Kim and B. Hwang, Korean J. Mater. Res., 27, 357 (2017) (in Korean). https://doi.org/10.3740/MRSK.2017.27.7.357
  21. X. Y. Long, J. Kang, B. Lv and F. C. Zhang, Mater. Des., 64, 237 (2014). https://doi.org/10.1016/j.matdes.2014.07.055
  22. G. E. Dieter, Mechanical Metallurgy, p.800, McGraw-Hill Education, New York, USA (2001).
  23. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons Inc., New Jersey, USA 1996.
  24. J. M. Lee, J. J. Han, Y. B. Song, J. H. Ham, H. K. Kim and B. Hwang, Korea J. Mater. Res., 28, 459 (2018). https://doi.org/10.3740/MRSK.2018.28.8.459