DOI QR코드

DOI QR Code

Annealing Characteristics of an Al-6.5Mg-1.5Zn Alloy Cold-Rolled After Casting

주조 후 냉간 압연된 Al-6.5Mg-1.5Zn계 합금의 어닐링 특성

  • Oh, Sung-Jun (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 오성준 (국립목포대학교 신소재공학과) ;
  • 이성희 (국립목포대학교 신소재공학과)
  • Received : 2018.08.24
  • Accepted : 2018.09.11
  • Published : 2018.09.27

Abstract

The annealing characteristics of a cold rolled Al-6.5Mg-1.5Zn alloy newly designed as an automobile material is investigated in detail. The aluminum alloy in the ingot state is cut to a thickness of 4 mm, a total width of 30 mm and a length of 100 mm and then reduced to a thickness of 1 mm (reduction of 75 %) by multi-pass rolling at room temperature. Annealing after rolling is performed at temperatures ranging from 200 to $400^{\circ}C$ for 1 hour. The tensile strength of the annealed material tends to decrease with the annealing temperature and shows a maximum tensile strength of 482MPa in the material annealed at $200^{\circ}C$. The tensile elongation of the annealed material increases with the annealing temperature, while the tensile strength does not, and reaches a maximum value of 26 % at the $350^{\circ}C$ annealed material. For the microstructure, recovery and recrystallization actively occur as the annealing temperature increases. The recrystallization begins to occur at $300^{\circ}C$ and is completed at $350^{\circ}C$, which results in the formation of a fine grained structure. After the rolling, the rolling texture of {112}<111>(Cu-Orientation) develops, but after the annealing a specific texture does not develop.

Keywords

References

  1. S. GUO, Y. XU, Y. Han, J. LIU, G. XUE and H. NAGAUMI, Trans. Nonferrous Met. Soc. China, 24, 2393 (2014). https://doi.org/10.1016/S1003-6326(14)63362-8
  2. X. Fan, Z. He, W. Zhou and S. Yuan, J. Mater. Process. Technol., 228, 179 (2016). https://doi.org/10.1016/j.jmatprotec.2015.10.016
  3. L. Ding, Y. Weng, S. Wu, R. E. Sanders, Z. Jia and Q. Liu, Mater. Sci. Eng., A, 651, 991 (2016). https://doi.org/10.1016/j.msea.2015.11.050
  4. M. J. Ahn, H. S. You and S. H. Lee, Korean J. Mater. Res., 26, 388 (2016). https://doi.org/10.3740/MRSK.2016.26.7.388
  5. J. H. Yang, and S. H. Lee, Korean J. Mater. Res., 26, 628 (2016). https://doi.org/10.3740/MRSK.2016.26.11.628
  6. H. W. Kim, S. B. Kang, H. Kang and K. W. Nam, Korean J. Met. Mater., 37, 1041 (1999).
  7. H. S. Ko, S. B. Kang, H. W. Kim and S. H. Hong, Korean J. Met. Mater., 37, 650 (1999).
  8. H. S. Ko, S. B. Kang and H. W. Kim, Korean J. Met. Mater., 37, 891 (1999).
  9. K. D. Woo, H. S. Na, H. J. Mun and I. O. Hwang, Korean J. Met. Mater., 38, 766 (2000).
  10. K. D. Woo, I. O. Hwang, J. S. Lee, Korean J. Met. Mater., 37, 1468 (1999).
  11. C. W. Park and H. Y. Kim, Trans. Korean Soc. Mech. Eng. A, 36, 1675 (2012). https://doi.org/10.3795/KSME-A.2012.36.12.1675
  12. N. J. Park, J. H. Hwang and J. S. Roh, Korean J. Met. Mater., 47, 1 (2009)
  13. C. D. Yim, Y. M. Kim, S. H. Park and B. S. You, Korean J. Met. Mater., 50, 619 (2012). https://doi.org/10.3365/KJMM.2012.50.9.619
  14. D. H. Kim, J. M. Choi, D. H. Jo and I. M. Park, Korean J. Met. Mater., 52, 195 (2014). https://doi.org/10.3365/KJMM.2014.52.3.195
  15. E. Y. Kim, J. H. Cho, H. W. Kim and S. H. Choi, Korean J. Met. Mater., 51, 41 (2013). https://doi.org/10.3365/KJMM.2013.51.1.041
  16. F. J. Humphreys and M. Hatherly, RECRYSTALLIZATION and Related Annealing Phenomena, 2nd ed., p.169-172, Elsevier Ltd, UK (2004).
  17. Japan Inst. of Light Metals, Microstructure and Properties of Aluminum Alloys, p.451-469, Japan (1991).