DOI QR코드

DOI QR Code

Studies on Cosmeceutical Activity of Extracts of Moringa oleifera Extract

모링가 추출물에 대한 화장품약리활성 검증

  • Kim, So Ra (Department of Cosmetic and Biotechnology, Hoseo University) ;
  • Yoo, Dan Hee (Department of Cosmetic and Biotechnology, Hoseo University) ;
  • Yeom, Hyeon Ji (Department of Cosmetic and Biotechnology, Hoseo University) ;
  • Oh, Min Jeong (Department of Cosmetic and Biotechnology, Hoseo University) ;
  • Lee, Jin Young (Department of Cosmetic and Biotechnology, Hoseo University)
  • 김소라 (호서대학교 화장품생명공학부) ;
  • 유단희 (호서대학교 화장품생명공학부) ;
  • 염현지 (호서대학교 화장품생명공학부) ;
  • 오민정 (호서대학교 화장품생명공학부) ;
  • 이진영 (호서대학교 화장품생명공학부)
  • Received : 2018.04.17
  • Accepted : 2018.07.11
  • Published : 2018.09.30

Abstract

The purpose of this study was to investigate the role of the Moringa oleifera (M. oleifera) extract as a cosmetic additive. The tyrosinase and elastase inhibitory effects showed 47% and 39% at $1,000{\mu}g/mL$ concentration, respectively. Also, the collagenase inhibition effect was 31% at $500{\mu}g/mL$ concentration. A cell viability test, measured on macrophage cell (RAW 264.7) and melanoma cell (B16F10) by ethanol extract of M. oleifera, showed 94.2% and 94.8% at $100{\mu}g/mL$ concentration, respectively. In order to confirm anti-inflammatory activity, we examined the inhibitory effects on the production of lipopolysaccharides (LPS)-induced NO in RAW 264.7 cells by Griess assay. As a result, the M. oleifera extract showed a concentration-dependent inhibition of NO production. The protein expression inhibitory effects of M. oleifera extract were measured by western blot at 25, 50, $100{\mu}g/mL$ concentration and the ${\beta}-actin$. Results showed that the expression inhibition rates of the iNOS, COX-2, MITF, TRP-1, TRP-2, tyrosinase protein were decreased by 85.8%, 57.5%, 80.7%, 30%, 29.9%, 23.6% at $100{\mu}g/mL$ concentration, respectively. It was concluded that M. oleifera extracts had the anti-inflammatory and whitening effects and thus could be applied for cosmetics as a natural ingredient.

본 연구에서는 화장품 천연소재로서 모링가 에탄올 추출물의 이용 가능성을 확인하였다. Tyrosinase와 elastase 저해활성을 측정한 결과 각각 $1,000{\mu}g/mL$에서 47%, 39%의 활성을 나타내었다. 모링가 에탄올 추출물에 대한 collagenase 저해활성을 측정한 결과 $1,000{\mu}g/mL$에서 31%의 활성을 확인하였다. 세포 생존율을 MTT 분석법으로 확인한 결과 대식 세포(Raw264.7)와 멜라노마 세포(B16F10)의 농도 구간이 $100{\mu}g/mL$ 일 때 각각 94.2%, 94.8%의 생존율을 보였다. 항염증 활성을 확인하기 위해 griess 분석에 의하여 대식 세포에 lipopolysaccharides (LPS)를 처리하였다. 그 결과 모링가 에탄올 추출물의 농도가 증가함에 따라 NO 발현 억제효과를 확인하였다. Western blot을 통한 단백질 발현 억제 효과를 측정하기 위해 25, 50, $100{\mu}g/mL$ 농도의 모링가 에탄올 추출물과 ${\beta}-actin$을 사용하였다. 그 결과, iNOS, COX-2, MITF, TRP-1, TRP-2, tyrosinase의 단백질 발현양이 $1 00{\mu}g/mL$에서 85.8%, 57.5%, 80.7%, 30%, 29.9%, 23.6%로 억제됨을 확인하였다. 따라서 미백 및 항염증 효과가 우수함을 확인하였고, 모링가 에탄올 추출물의 화장품 소재로서의 가능성을 확인하였다.

Keywords

References

  1. D. O. Lim, J. S. Park, S. O. Hwang, K. M. Min, and Y. J. Chae, Cosmetics industry analysis report, 57, Korea Health Industry Development Institute (2011).
  2. J. M. Lee and J. S. An, The influence of purchasing behavior on brand attitude, shopping satisfaction, and recommendation of herbal cosmetics consumer, J. Fashion Business, 15(1), 129 (2011).
  3. Y. Heo and H. A. Kim, Correlation between skin prick test and enzyme-linked immunosorbent assay using serum for identification of subjects positive to major respiratory allergens, Korea J. Environmental Health, 34(5), 369 (2008).
  4. D. H. Jeong, K. B. W. R. Kim, B. K. Kang, S. A. Jung, H. J. Kim, H. Y. Jeong, S. W. Park, and D. H. Ahn, Anti-inflammatory activity of the Undaria pin- natifida water extract, J. Appli. Biologi. Chemi., 55(4), 221 (2012). https://doi.org/10.3839/jabc.2012.035
  5. J. K. Kundu and Y. J. Surh, Inflammation: gearing the journey to cancer, Mutat. Res-Rev. Mutat., 659(1), 15 (2008). https://doi.org/10.1016/j.mrrev.2008.03.002
  6. M. Miyataka, K. A. Rich, M. Ingram, T. Yamamoto, and R. J. Bing, Nitric oxide, anti-inflammatory drugs on renal prostaglandins and cyclooxygenase-2, Hypertension, 39(3), 785 (2002). https://doi.org/10.1161/hy0302.105689
  7. D. J. Stuehr, H. J. Cho, N. S. Kwon, M. F. Weise, and C. F. Nathan, Purification and characteriazation of the cytokine-induced macrophage nitric oxide syn- thase: an FAD and FMN containing flavoprotein, Proc. Natl. Acad. Sci. U.S.A., 88(17), 7773 (1991). https://doi.org/10.1073/pnas.88.17.7773
  8. M. G. Ryo, KDA textbook editiong board, Dermatology, 5, 348, Seoul (2008).
  9. K. Maeda and M. Fukuda, In vitro effectiveness of several whitening cosmetic components in human melanocytes, J. Soc. Cos. Chem., 42, 361 (1991).
  10. N. Smit, J. Vicanova, and S. Pavel, The hunt for natural skin whitening agents, Int. J. Mol. Sci., 10(12), 5326 (2009). https://doi.org/10.3390/ijms10125326
  11. M. Seiji, K. Shimao, M. S. Birbeck, and T. B. Fitzpatrick, Subcellular localization of melanin biosynthesis, Ann. N. Y. Acad. Sci., 100(1), 497 (1963). https://doi.org/10.1111/j.1749-6632.1963.tb42869.x
  12. T. Kushimoto, V. Basrur, J. Valencia, J. Matsunaga, W. D. Vieira, V. J. Ferrans, J. Muller, E. Appella, and V. J. Hearing, A model for melanosome biogenesis based on the purification and analysis of early melanosomes, Proc. Natl. Acad. Sci. U.S.A., 98(19), 10698 (2001). https://doi.org/10.1073/pnas.191184798
  13. E. Y. Kwak, Effect of TPA on MIFT (microphthalmia-associated transcription factor) protein chip and melanogenesis in B16 melanoma cell, Inha Univ., (2006).
  14. R. Paliwal, V. A. Sharma, and Pracheta, A review on horse radish tree (Moringa oleifera): a multipurpose tree with high economic and commercial importance, J. Biotech., 3(4), 317 (2011).
  15. F. Anwar, S. Latif, M. Ashraf, and A. H. Gilarni, Moringa oleifera: a food plant with multiple medicinal uses, Phyto. Res., 21(1), 17 (2007). https://doi.org/10.1002/ptr.2023
  16. A. A. Hamza, Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats, Food Chem. Toxicol., 48(1), 345 (2009). https://doi.org/10.1016/j.fct.2009.10.022
  17. Y. J. Choi and K. I. Jung, Anti-diabetic, alcohol-metabolizing, and hepatoprotective activities of Moringa (Moringa oleifera Lam.) leaf extracts, J. Korean Soc. Food Sci. Nutr., 45(6), 819 (2016). https://doi.org/10.3746/jkfn.2016.45.6.819
  18. H. H. Ki, K. H. Moon, J. H. Lee, J. H. Lee, D. G. Kim, K. O. Jeong, S. Y. Im, Y. M. Lee, and D. K. Kim, Synergistic inhibition of aronia melanocarpa and Moringa oleifera seed extract on experimental atopic dermatitis, J. Korean Soc. Food Sci. Nutr., 46(3), 298 (2017). https://doi.org/10.3746/jkfn.2017.46.3.298
  19. H. J. Lee and Y. C. Chang, Suppression of TNF-${\alpha}$-induced inflammation by extract from different parts of Moringa in HaCaT cells, J. Life Sci., 22(9), 1254 (2012). https://doi.org/10.5352/JLS.2012.22.9.1254
  20. A. Yagi, T. Kanbara, and N. Morinobu, Inhibition of mushroom-tyrosinase by aloe extract, Planta. Medica., 53(6), 515 (1986). https://doi.org/10.1055/s-2006-962798
  21. R. J. Cannell, S. J. Kellan, A. M. Owsianks, and J. M. Walker, Results of a large scale screen of microalgae for the production of protease inhibitors, Planta. Medica., 54(1), 10 (1988). https://doi.org/10.1055/s-2006-962319
  22. E. Wunsch and H. G. Heindrich, Zur quantitativen bestimmung der kollagenase, Hoppe-Seyler's Z. Physiol. Chem., 333(1), 149 (1963). https://doi.org/10.1515/bchm2.1963.333.1.149
  23. J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47(4), 936 (1987).
  24. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Analy. Bio., 126(1), 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  25. S. Im, O. Moro, F. Peng, E. E. Medrano, J. Cornelius, G. Babcock, J. J. Nordlund, and Z. A. Abdel-Malek, Activation of the cyclic AMP pathway by ${\alpha}$-melanotropin mediates the rest of human melanocytes to ultraviolet B radiation, Cancer Res., 58(1), 47 (1998).
  26. D. L. DeWitt, T. E. Rollins, J. S. Day, J. A. Gauger, and W. L. Smith, Orientation of the active site and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum, J. Bio. Chemi., 256(20), 10375 (1981).
  27. M. E. Choi, B. K. Jeon, D. S. Kim, Y. J. Mun, and W. H. Woo, A study on application for beauty food of mixture of Korean red ginseng and Fagopyrum esculentum: anti-oxidative effect and collagenase inhibitory activity, Herb. Formula Sci., 17(1), 153 (2009).
  28. S. P. Jeroma, L. Gabrielle, and F. Raul, Identification of collagen fibrils in scleroderma skin, J. Investig. Dermatol., 90(1), 48 (1998). https://doi.org/10.1111/1523-1747.ep12462561
  29. M. El-Domyati, S. Attia, F. Saleh, D. Brown, D. E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin, Exp. Dermatol., 11(5), 398 (2002). https://doi.org/10.1034/j.1600-0625.2002.110502.x
  30. P. U. Giacomoni and G. Rein, Factors of skin ageing share common mechanisms, Biogerontology, 2(4), 219 (2001). https://doi.org/10.1023/A:1013222629919
  31. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B, Biol., 63(1), 41 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
  32. H. Ukeda, S. Maeda, T. Ishii, and M. Sawamura, Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'--1--(phenylamino)-carbonyl--3, 4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase, Anal. Biochem., 251(2), 206 (1997). https://doi.org/10.1006/abio.1997.2273
  33. B. G. Knowles and S. Moncada, Nitric oxide synthases in mammals, Bio. J., 298(2), 249 (1994).
  34. C. Nathan, Inducible nitric oxide synthase: what difference does it make?, J. Clinical investigation, 100(10), 2417 (1997). https://doi.org/10.1172/JCI119782
  35. R. M. Palmer, A. G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327(6122), 524 (1987). https://doi.org/10.1038/327524a0
  36. R. Korhonen, A. Lahti, H. Kankaanranta, and E. Moilanen, Nitric oxide production and signaling in inflammation, Curr. Drug Targets Inflamm. Allergy, 4(4), 471 (2005). https://doi.org/10.2174/1568010054526359
  37. J. Rodriguez-Vita and T. Lawrence, The resolution of inflammation and cancer, Cytokine Growth Factor Rev., 21(1), 61 (2010). https://doi.org/10.1016/j.cytogfr.2009.11.006
  38. D. O. Adams and T. A. Hamilton, The cell biology of macrophage activation, Annu. Rev. Immunol., 2, 283 (1984). https://doi.org/10.1146/annurev.iy.02.040184.001435
  39. F. S. Laroux, Mechanisms of inflammation: the good, the bad and the ugly, Front. Biosci., 9, 3156 (2004). https://doi.org/10.2741/1468
  40. M. E. Turini and R. N. DuBois, Cyclooxygenase-2: a therapeutic target, Annu. Rev. Med., 53, 35 (2002). https://doi.org/10.1146/annurev.med.53.082901.103952
  41. C. S. Williams, M. Mann, and R. N. DuBois, The role of cyclooxygenases in inflammation, cancer, and development, Oncogene, 18(55), 7908 (1999). https://doi.org/10.1038/sj.onc.1203286
  42. G. E. Costin and V. J. Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB J., 21(4), 976 (2007). https://doi.org/10.1096/fj.06-6649rev