DOI QR코드

DOI QR Code

Effects of Resveratrol and Resveratryl Triacetate on The Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10

대기 미립자 물질 PM10에 노출된 인간 표피 각질형성세포의 염증 반응에 대한 레스베라트롤과 레스베라트릴 트라이아세테이트(RTA)의 영향

  • Choi, Min A (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University) ;
  • Seok, Jin Kyung (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University) ;
  • Lee, Jeong-won (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University) ;
  • Lee, Shin Young (Ruby Crown Co., Ltd.) ;
  • Kim, Young Mi (Ruby Crown Co., Ltd.) ;
  • Boo, Yong Chool (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University)
  • 최민아 (경북대학교 의과대학 분자의학교실, 세포기질연구소) ;
  • 석진경 (경북대학교 의과대학 분자의학교실, 세포기질연구소) ;
  • 이정원 (경북대학교 의과대학 분자의학교실, 세포기질연구소) ;
  • 이신영 ((주)루비크라운) ;
  • 김영미 ((주)루비크라운) ;
  • 부용출 (경북대학교 의과대학 분자의학교실, 세포기질연구소)
  • Received : 2018.06.01
  • Accepted : 2018.08.04
  • Published : 2018.09.30

Abstract

Airborne pollution causes oxidative damage, inflammation, and premature aging of skin. Resveratrol is a polyphenol compound that has various biological activities such as antioxidant, anti-inflammation, and anti-melanogenic activities but it is unstable to heat and light. Resveratryl triacetate (RTA) is a new cosmetic ingredient that is more stable than resveratrol and its skin safety and whitening efficacy have been reported previously. The purpose of this study was to examine the effects of resveratrol and resveratryl triacetate (RTA) on the inflammatory responses of human epidermal keratinocytes (HEKs) exposed to airborne particulate matters with a diameter of < $10{\mu}m$ (PM10). Cultured HEKs were exposed to PM10 in the absence or presence of resveratrol and RTA. Assays were undertaken to determine cell viability, the production of reactive oxygen species (ROS), and the expression of inflammatory cytokines. PM10 treatment decreased cell viability, and increased the expression of pro-inflammatory cytokines such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and interleukin-8 (IL-8). Resveratrol and RTA reduced cell death and ROS production induced by PM10. PM10-induced mRNA expression of the inflammatory cytokines was either attenuated (IL-6), or enhanced ($IL-1{\beta}$), or unaffected ($TNF-{\alpha}$ and IL-8) by resveratrol and RTA. PM10-induced IL-6 protein expression was attenuated by resveratrol and RTA. This study suggests that resveratrol and RTA have activities regulating cell damage and inflammatory responses of the skin exposed to airborne particulate matters.

대기 오염은 피부의 산화적 손상, 염증 및 노화를 일으킬 수 있다. 레스베라트롤은 폴리페놀 화합물의 일종으로 항산화, 항염증, 멜라닌 생성 억제 작용 등 다양한 생물학적 활성이 있는 한편 열과 빛에 약한 단점이 있다. 레스베라트릴 트라이아세테이트(RTA)는 레스베라트롤에 비해 안정하고, 피부 안전성과 미백 효능이 보고된 화장품 신소재이다. 본 연구의 목적은 직경 $10{\mu}m$ 미만 대기 미립자 물질(PM10)에 노출된 인간 표피각질형성세포(HEK)의 염증 반응에 대한 레스베라트롤과 RTA의 영향을 조사하기 위한 것이다. 배양된 HEK세포를 레스베라트롤과 RTA의 유무 조건에서 PM10에 노출시키고, 세포 생존율, 반응성 산소종(ROS)의 생성 및 염증성 사이토카인의 발현을 분석하였다. PM10을 처리하였을 때 세포 생존율이 감소하였고 종양괴사인자-${\alpha}$($TNF-{\alpha}$), 인터루킨-$1{\beta}$($IL-1{\beta}$), 인터루킨-6(IL-6) 및 인터루킨-8(IL-8)의 발현이 증가하였다. 레스베라트롤과 RTA는 PM10으로 유도된 세포의 사멸과 ROS 생성을 경감시켰다. PM10에 의해 증가되는 여러 염증성 사이토카인의 발현은 레스베라트롤과 RTA에 의해 경감되거나(IL-6), 증진되거나($IL-1{\beta}$), 변화하지 않았다($TNF-{\alpha}$ 및 IL-8). PM10에 의해 유도된 IL-6단백질의 발현이 레스베라트롤과 RTA에 의해 감소되었다. 본 연구의 결과는 레스베라트롤과 RTA가 대기 미립자 물질에 노출된 피부의 세포 손상과 염증 반응을 조절하는 작용이 있음을 시사한다.

Keywords

References

  1. J. D. Sacks, L. W. Stanek, T. J. Luben, D. O. Johns, B. J. Buckley, J. S. Brown, and M. Ross, Particulate matter-induced health effects: who is susceptible?, Environ. Health Perspect., 119(4), 446 (2012). https://doi.org/10.1289/ehp.1002255
  2. J. O. Anderson, J. G. Thundiyil, and A. Stolbach, Clearing the air: a review of the effects of particulate matter air pollution on human health, J. Med. Toxicol., 8(2), 166 (2012). https://doi.org/10.1007/s13181-011-0203-1
  3. K. E. Kim, D. Cho, and H. J. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases, Life Sci., 152(1), 126 (2016). https://doi.org/10.1016/j.lfs.2016.03.039
  4. A. Vierkotter, T. Schikowski, U. Ranft, D. Sugiri, M. Matsui, U. Kramer, and J. Krutmann, Airborne particle exposure and extrinsic skin aging, J. Invest. Dermatol., 130(12), 2719 (2010). https://doi.org/10.1038/jid.2010.204
  5. R. Bengalli, E. Molteni, E. Longhin, M. Refsnes, M. Camatini, and M. Gualtieri, Release of IL-1 beta triggered by Milan summer PM10: molecular pathways involved in the cytokine release, Biomed. Res. Int., 2013(1), 158093 (2013).
  6. D. Y. Cho, W. Le, D. T. Bravo, P. H. Hwang, B. Illek, H. Fischer, and J. V. Nayak, Air pollutants cause release of hydrogen peroxide and interleukin-8 in a human primary nasal tissue culture model, Int. Forum. Allergy Rhinol., 4(12), 966 (2014). https://doi.org/10.1002/alr.21413
  7. R. Villarreal-Calderon, W. Reed, J. Palacios-Moreno, S. Keefe, L. Herritt, D. Brooks, R. Torres-Jardon, and L. Calderon-Garciduenas, Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection, Exp. Toxicol. Pathol., 64(4), 297 (2012). https://doi.org/10.1016/j.etp.2010.09.002
  8. J. K. Seok, J. W. Lee, Y. M. Kim, and Y. C. Boo, Punicalagin and (-)-epigallocatechin-3-gallate rescue cell viability and attenuate inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10, Skin Pharmacol. Physiol., 31(3), 134 (2018). https://doi.org/10.1159/000487400
  9. J. W. Lee, J. K. Seok, and Y. C. Boo, Ecklonia cava extract and dieckol attenuate cellular lipid peroxidation in keratinocytes exposed to PM10, Evid.-Based Complementary Altern. Med., 2018(1), 8248323 (2018).
  10. S. Park, J. K. Seok, J. Y. Kwak, H. J. Suh, Y. M. Kim, and Y. C. Boo, Anti-inflammatory effects of pomegranate peel extract in THP-1 cells exposed to particulate matter PM10, Evid.-Based Complementary Altern. Med., 2016(1), 6836080 (2016).
  11. A. Rauf, M. Imran, H. A. R. Suleria, B. Ahmad, D. G. Peters, and M. S. Mubarak, A comprehensive review of the health perspectives of resveratrol, Food Funct., 8(12), 4284 (2017). https://doi.org/10.1039/C7FO01300K
  12. R. Yutani, R. Teraoka, and S. Kitagawa, Microemulsion using polyoxyethylene sorbitan trioleate and its usage for skin delivery of resveratrol to protect skin against UV-induced damage, Chem. Pharm. Bull., 63(9), 741 (2015). https://doi.org/10.1248/cpb.c15-00378
  13. G. Fabbrocini, S. Staibano, G. De Rosa, V. Battimiello, N. Fardella, G. Ilardi, M. I. La Rotonda, A. Longobardi, M. Mazzella, M. Siano, F. Pastore, V. De Vita, M. L. Vecchione, and F. Ayala, Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study, Am. J. Clin. Dermatol., 12(2), 133 (2011). https://doi.org/10.2165/11530630-000000000-00000
  14. V. Karuppagounder, S. Arumugam, R. A. Thandavarayan, V. Pitchaimani, R. Sreedhar, R. Afrin, M. Harima, H. Suzuki, M. Nomoto, S. Miyashita, K. Suzuki, and K. Watanabe, Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice, Int. Immunopharmacol., 23(2), 617 (2014). https://doi.org/10.1016/j.intimp.2014.10.014
  15. S. Caglayan Sozmen, M. Karaman, S. Cilaker Micili, S. Isik, Z. Arikan Ayyildiz, A. Bagriyanik, N. Uzuner, and O. Karaman, Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesions through effects on the epithelium, PeerJ, 4(1), e1889 (2016). https://doi.org/10.7717/peerj.1889
  16. R. A. Baxter, Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation, J. Cosmet. Dermatol., 7(1), 2 (2008). https://doi.org/10.1111/j.1473-2165.2008.00354.x
  17. S. H. Kwon, H. R. Choi, Y. A. Kang, and K. C. Park, Depigmenting effect of resveratrol is dependent on FOXO3a activation without SIRT1 activation, Int. J. Mol. Sci., 18(6), 1213 (2017). https://doi.org/10.3390/ijms18061213
  18. J. Park, J. H. Park, H. J. Suh, I. C. Lee, J. Koh, and Y. C. Boo, Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis, Arch. Dermatol. Res., 306(5), 475 (2014). https://doi.org/10.1007/s00403-014-1440-3
  19. J. H. Ryu, J. K. Seok, S. M. An, J. H. Baek, J. S. Koh, and Y. C. Boo, A study of the human skin-whitening effects of resveratryl triacetate, Arch. Dermatol. Res., 307(3), 239 (2015). https://doi.org/10.1007/s00403-015-1556-0
  20. Y. C. Boo, Clinical evaluation of skin whitening ef- fect of a cream containing resveratryl triacetate, Fragrance J. Korea, 2016(3), 72 (2016).
  21. T. C. Hsieh, Y. C. Huang, and J. M. Wu, Control of prostate cell growth, DNA damage and repair and gene expression by resveratrol analogues, in vitro, Carcinogenesis., 32(1), 93 (2011). https://doi.org/10.1093/carcin/bgq230
  22. M. M. Mojtahedi and S. Samadian, Efficient and rapid solvent-free acetylation of alcohols, phenols, and thiols using catalytic amounts of sodium acetate trihydrate, J. Chem., 2013(1), 642479 (2013).
  23. P. Puri, S. K. Nandar, S. Kathuria, and V. Ramesh, Effects of air pollution on the skin: A review, Indian J. Dermatol. Venereol. Leprol., 83(4), 415 (2017). https://doi.org/10.4103/0378-6323.199579
  24. S. E. Mancebo and S. Q. Wang, Recognizing the im- pact of ambient air pollution on skin health, J. Eur. Acad. Dermatol. Venereol., 29(12), 2326 (2015). https://doi.org/10.1111/jdv.13250
  25. A. Carreras, M. L. Mateos-Martin, A. Velazquez-Palenzuela, E. Brillas, S. Sanchez-Tena, M. Cascante, L. Julia, and J. L. Torres, Punicalagin and catechins contain polyphenolic substructures that influence cell viability and can be monitored by radical chemosensors sensitive to electron transfer, J. Agric. Food Chem., 60(7), 1659 (2012). https://doi.org/10.1021/jf204059x
  26. J. Joven, V. Micol, A. Segura-Carretero, C. Alonso-Villaverde, J. A. Menendez, and P. Bioactive, Food components, polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease?, Crit. Rev. Food Sci. Nutr., 54(8), 985 (2014). https://doi.org/10.1080/10408398.2011.621772
  27. M. Gertz, T. T. N. Giang, F. Fischer, B. Suenkel, C. Schlicker, B. Franzel, J. Tomaschewski, F. Aladini, C. Becker, D. Wolters, and C. Steegborn, A molecular mechanism for direct sirtuin activation by resveratrol, PLoS One, 7(11), e49761 (2012). https://doi.org/10.1371/journal.pone.0049761
  28. J. Schwager, N. Richard, F. Widmer, and D. Raederstorff, Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells, BMC Complement. Altern. Med., 17(1), 309 (2017). https://doi.org/10.1186/s12906-017-1823-z
  29. A. Cignarella, C. Minici, C. Bolego, C. Pinna, P. Sanvito, R. M. Gaion, and L. Puglisi, Potential pro-inflammatory action of resveratrol in vascular smooth muscle cells from normal and diabetic rats, Nutr. Metab. Cardiovasc. Dis., 16(5), 322 (2006). https://doi.org/10.1016/j.numecd.2005.05.010
  30. J. Walker, K. Schueller, L. M. Schaefer, M. Pignitter, L. Esefelder, and V. Somoza, Resveratrol and its metabolites inhibit pro-inflammatory effects of lipopolysaccharides in U-937 macrophages in plasma-representative concentrations, Food Funct., 5(1), 74 (2014). https://doi.org/10.1039/C3FO60236B
  31. M. Baarine, S. J. Thandapilly, X. L. Louis, F. Mazue, L. Yu, D. Delmas, T. Netticadan, G. Lizard, and N. Latruffe, Pro-apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and normal cardiac cells, Genes Nutr., 6(2), 161 (2011). https://doi.org/10.1007/s12263-011-0232-z
  32. J. Scheller, A. Chalaris, D. Schmidt-Arras, and S. Rose-John, The pro- and anti-inflammatory properties of the cytokine interleukin-6, Biochim Biophys Acta., 1813(5), 878 (2011). https://doi.org/10.1016/j.bbamcr.2011.01.034
  33. T. Hidaka, E. Ogawa, E. H. Kobayashi, T. Suzuki, R. Funayama, T. Nagashima, T. Fujimura, S. Aiba, K. Nakayama, R. Okuyama, and M. Yamamoto, The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin, Nat. Immunol., 18(1), 64 (2017). https://doi.org/10.1038/ni.3614
  34. R. F. Casper, M. Quesne, I. M. Rogers, T. Shirota, A. Jolivet, E. Milgrom, and J. F. Savouret, Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity, Mol. Pharmacol., 56(4), 784 (1999).
  35. S. R. Beedanagari, I. Bebenek, P. Bui, and O. Hankinson, Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes, Toxicol. Sci., 110(1), 61 (2009). https://doi.org/10.1093/toxsci/kfp079
  36. A. Mohammadi-Bardbori, J. Bengtsson, U. Rannug, A. Rannug, and E. Wincent, Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR), Chem. Res, Toxicol., 25(9), 1878 (2012). https://doi.org/10.1021/tx300169e