DOI QR코드

DOI QR Code

Cardiometabolic Effects of Obstructive Sleep Apnea and Treatment Effects of Oral Appliance: An Updated Review for Dentists

  • Kim, Hye-Kyoung (Department of Oral Medicine, College of Dentistry, Dankook University) ;
  • Kim, Mee-Eun (Department of Oral Medicine, College of Dentistry, Dankook University)
  • Received : 2018.06.14
  • Accepted : 2018.08.29
  • Published : 2018.09.30

Abstract

Obstructive sleep apnea (OSA) is a relatively common, but greatly underdiagnosed sleep-related breathing disorder, characterized by recurrent collapse of the upper airway during sleep. OSA has been associated with a variety of cardiometabolic disease, such as hypertension, coronary artery disease, cardiac arrhythmia, cerebrovascular disease and metabolic dysfunction. Neurocognitive impairment, including excessive daytime sleepiness, increased risk of motor vehicle accidents, is also related to OSA. Sleep fragmentation and related arousals during sleep lead to intermittent hypoxia, sympathetic activation, oxidative stress, systemic inflammation and metabolic dysregulation which provide biological plausibility to this pathologic mechanism. Extensive studies demonstrated that OSA is a modifiable risk factor for the above mentioned diseases and oral appliances (OAs), although continuous positive air pressure (CPAP) is a first-line therapy of OSA, are not inferior to CPAP at least in mild OSA, and may be an alternative to CPAP in CPAP-intolerant subjects with OSA. The goal of this article is to provide a current knowledge of pathologic link between OSA and cardiovascular disease, focusing on intermittent hypoxia, sympathetic activation, oxidative stress and metabolic dysregulation. Then, previous epidemiologic studies will be reviewed to understand the causal relationship between OSA and cardiovascular disease. Finally, the effects of OAs will be updated via recent metaanalyses compared to CPAP.

Keywords

References

  1. American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien, III: American Academy of Sleep Medicine; 2014.
  2. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest 2014;146:1387-1394. https://doi.org/10.1378/chest.14-0970
  3. Duran J, Esnaola S, Rubio R, Iztueta A. Obstructive sleep apneahypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med 2001;163:685-689. https://doi.org/10.1164/ajrccm.163.3.2005065
  4. Kim J, In K, Kim J, et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. Am J Respir Crit Care Med 2004;170:1108-1113. https://doi.org/10.1164/rccm.200404-519OC
  5. Netzer NC, Hoegel JJ, Loube D, et al. Prevalence of symptoms and risk of sleep apnea in primary care. Chest 2003;124:1406-1414. https://doi.org/10.1378/chest.124.4.1406
  6. Khayat R, Pleister A. Consequences of obstructive sleep apnea: cardiovascular risk of obstructive sleep apnea and whether continuous positive airway pressure reduces that risk. Sleep Med Clin 2016;11:273-286. https://doi.org/10.1016/j.jsmc.2016.05.002
  7. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 2005;365:1046-1053. https://doi.org/10.1016/S0140-6736(05)74229-X
  8. Fletcher EC, Lesske J, Qian W, et al. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 1992;19:555-561. https://doi.org/10.1161/01.HYP.19.6.555
  9. Fletcher EC, Lesske J, Behm R, et al. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol 1992;72:1978-1984. https://doi.org/10.1152/jappl.1992.72.5.1978
  10. Tamisier R, Pepin JL, Remy J, et al. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur Respir J 2011;37:119-128. https://doi.org/10.1183/09031936.00204209
  11. Fletcher EC, Orolinova N, Bader M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 2002;92:627-633.
  12. Abboud F, Kumar R. Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. J Clin Invest 2014;124:1454-1457. https://doi.org/10.1172/JCI70420
  13. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 1995;96:1897-1904. https://doi.org/10.1172/JCI118235
  14. Somers VK, Dyken ME, Mark AL, Abboud FM. Parasympathetic hyperresponsiveness and bradyarrhythmias during apnoea in hypertension. Clin Auton Res 1992;2:171-176. https://doi.org/10.1007/BF01818958
  15. Kumar P, Prabhakar NR. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2012;2:141-219.
  16. Peng YJ, Yuan G, Ramakrishnan D, et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 2006;577:705-716. https://doi.org/10.1113/jphysiol.2006.114033
  17. Turnbull CD. Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea. J Thorac Dis 2018;10(Suppl 1):33-39. https://doi.org/10.21037/jtd.2017.10.33
  18. Zamarron C, Valdes Cuadrado L, Alvarez-Sala R. Pathophysiologic mechanisms of cardiovascular disease in obstructive sleep apnea syndrome. Pulm Med 2013;2013:521087.
  19. Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm 2017;2017:7018393.
  20. Munzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol 2017;70:212-229. https://doi.org/10.1016/j.jacc.2017.05.035
  21. Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 2002;165:934-939. https://doi.org/10.1164/ajrccm.165.7.2104126
  22. Rutter MK, Meigs JB, Sullivan LM, D'Agostino RB Sr, Wilson PW. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham offspring study. Circulation 2004;110:380-385. https://doi.org/10.1161/01.CIR.0000136581.59584.0E
  23. Svatikova A, Wolk R, Shamsuzzaman AS, Kara T, Olson EJ, Somers VK. Serum amyloid a in obstructive sleep apnea. Circulation 2003;108:1451-1454. https://doi.org/10.1161/01.CIR.0000089091.09527.B8
  24. Imagawa S, Yamaguchi Y, Ogawa K, et al. Interleukin-6 and tumor necrosis factor-${\alpha}$ in patients with obstructive sleep apneahypopnea syndrome. Respiration 2004;71:24-29. https://doi.org/10.1159/000075645
  25. Zamarron C, Garcia Paz V, Riveiro A. Obstructive sleep apnea syndrome is a systemic disease. Current evidence. Eur J Intern Med 2008;19:390-398. https://doi.org/10.1016/j.ejim.2007.12.006
  26. Javaheri S, Barbe F, Campos-Rodriguez F, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol 2017;69:841-858.
  27. Schmid SM, Hallschmid M, Schultes B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol 2015;3:52-62. https://doi.org/10.1016/S2213-8587(14)70012-9
  28. Mesarwi OA, Sharma EV, Jun JC, Polotsky VY. Metabolic dysfunction in obstructive sleep apnea: a critical examination of underlying mechanisms. Sleep Biol Rhythms 2015;13:2-17. https://doi.org/10.1111/sbr.12078
  29. Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev 2005;9:211-224. https://doi.org/10.1016/j.smrv.2005.01.006
  30. Knutson KL. Impact of sleep and sleep loss on glucose homeostasis and appetite regulation. Sleep Med Clin 2007;2:187-197. https://doi.org/10.1016/j.jsmc.2007.03.004
  31. Coughlin SR, Mawdsley L, Mugarza JA, Calverley PM, Wilding JP. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J 2004;25:735-741. https://doi.org/10.1016/j.ehj.2004.02.021
  32. Expert Panel on Detection, Evaluation, Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001;285:2486-2497. https://doi.org/10.1001/jama.285.19.2486
  33. Harsch IA, Wallaschofski H, Koebnick C, et al. Adiponectin in patients with obstructive sleep apnea syndrome: course and physiologic relevance. Respiration 2004;71:580-586. https://doi.org/10.1159/000081758
  34. Larsen JJ, Hansen JM, Olsen NV, Galbo H, Dela F. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol 1997;504:241-249. https://doi.org/10.1111/j.1469-7793.1997.241bf.x
  35. Braun B, Rock PB, Zamudio S, et al. Women at altitude: shortterm exposure to hypoxia and/or alpha (1)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol 2001;91:623-631. https://doi.org/10.1152/jappl.2001.91.2.623
  36. Kawakami N, Takatsuka N, Shimizu H. Sleep disturbance and onset of type 2 diabetes. Diabetes Care 2004;27:282-283. https://doi.org/10.2337/diacare.27.1.282
  37. Nilsson PM, Roost M, Engstrom G, Hedblad B, Berglund G. Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care 2004;27:2464-2469. https://doi.org/10.2337/diacare.27.10.2464
  38. Mallon L, Broman JE, Hetta J. High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year followup study of a middle-aged population. Diabetes Care 2005;28:2762-2767. https://doi.org/10.2337/diacare.28.11.2762
  39. Ip MS, Lam KS, Ho C, Tsang KW, Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea. Chest 2000;118:580-586. https://doi.org/10.1378/chest.118.3.580
  40. Zhang XL, Yin KS, Wang H, Su S. Serum adiponectin levels in adult male patients with obstructive sleep apnea hypopnea syndrome. Respiration 2006;73:73-77. https://doi.org/10.1159/000088690
  41. Masserini B, Morpurgo PS, Donadio F, et al. Reduced levels of adiponectin in sleep apnea syndrome. J Endocrinol Invest 2006;29:700-705. https://doi.org/10.1007/BF03344179
  42. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000;342:1378-1384. https://doi.org/10.1056/NEJM200005113421901
  43. Hou H, Zhao Y, Yu W, et al. Association of obstructive sleep apnea with hypertension: a systematic review and meta-analysis. J Glob Health 2018;8:010405.
  44. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 1991;87:1953-1957. https://doi.org/10.1172/JCI115221
  45. Chapleau MW, Hajduczok G, Abboud FM. Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 1988;295:327-334. https://doi.org/10.1097/00000441-198804000-00019
  46. Dong JY, Zhang YH, Qin LQ. Obstructive sleep apnea and cardiovascular risk: meta-analysis of prospective cohort studies. Atherosclerosis 2013;229:489-495. https://doi.org/10.1016/j.atherosclerosis.2013.04.026
  47. Jia S, Zhou YJ, Yu Y, et al. Obstructive sleep apnea is associated with severity and long term prognosis of acute coronary syndrome. J Geriatr Cardiol 2018;15:146-152.
  48. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-809. https://doi.org/10.1038/362801a0
  49. Ip MS, Tse HF, Lam B, Tsang KW, Lam WK. Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med 2004;169:348-353. https://doi.org/10.1164/rccm.200306-767OC
  50. Mehra R, Benjamin EJ, Shahar E, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the sleep heart health study. Am J Respir Crit Care Med 2006;173:910-916. https://doi.org/10.1164/rccm.200509-1442OC
  51. Ng CY, Liu T, Shehata M, Stevens S, Chugh SS, Wang X. Metaanalysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. Am J Cardiol 2011;108:47-51. https://doi.org/10.1016/j.amjcard.2011.02.343
  52. Bitter T, Horstkotte D, Oldenburg O. [Sleep disordered breathing and cardiac arrhythmias: mechanisms, interactions, and clinical relevance]. Dtsch Med Wochenschr 2011;136:431-435. https://doi.org/10.1055/s-0031-1274525
  53. Barone DA, Krieger AC. Stroke and obstructive sleep apnea: a review. Curr Atheroscler Rep 2013;15:334. https://doi.org/10.1007/s11883-013-0334-8
  54. Godoy J, Mellado P, Tapia J, Santin J. Obstructive sleep apnea as an independent stroke risk factor: possible mechanisms. Curr Mol Med 2009;9:203-209. https://doi.org/10.2174/156652409787581556
  55. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 2005;353:2034-2041. https://doi.org/10.1056/NEJMoa043104
  56. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the sleep heart health study. Am J Respir Crit Care Med 2001;163:19-25. https://doi.org/10.1164/ajrccm.163.1.2001008
  57. Dong R, Dong Z, Liu H, Shi F, Du J. Prevalence, risk Factors, outcomes, and treatment of obstructive sleep apnea in patients with cerebrovascular disease: a systematic review. J Stroke Cerebrovasc Dis 2018;27:1471-1480. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.12.048
  58. Cadilhac DA, Thorpe RD, Pearce DC, et al. Sleep disordered breathing in chronic stroke survivors. A study of the long term follow-up of the SCOPES cohort using home based polysomnography. J Clin Neurosci 2005;12:632-637. https://doi.org/10.1016/j.jocn.2004.08.014
  59. Camilo MR, Schnitman SV, Sander HH, et al. Sleep-disordered breathing among acute ischemic stroke patients in Brazil. Sleep Med 2016;19:8-12. https://doi.org/10.1016/j.sleep.2015.11.008
  60. Urbano F, Roux F, Schindler J, Mohsenin V. Impaired cerebral autoregulation in obstructive sleep apnea. J Appl Physiol (1985) 2008;105:1852-1857. https://doi.org/10.1152/japplphysiol.90900.2008
  61. Ryan CM, Battisti-Charbonney A, Sobczyk O, Duffin J, Fisher J. Normal hypercapnic cerebrovascular conductance in obstructive sleep apnea. Respir Physiol Neurobiol 2014;190:47-53. https://doi.org/10.1016/j.resp.2013.09.003
  62. Iftikhar IH, Hays ER, Iverson MA, Magalang UJ, Maas AK. Effect of oral appliances on blood pressure in obstructive sleep apnea: a systematic review and meta-analysis. J Clin Sleep Med 2013;9:165-174.
  63. Cook NR, Cohen J, Hebert PR, Taylor JO, Hennekens CH. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med 1995;155:701-709. https://doi.org/10.1001/archinte.1995.00430070053006
  64. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 1990;335:765-774. https://doi.org/10.1016/0140-6736(90)90878-9
  65. Bratton DJ, Gaisl T, Wons AM, Kohler M. CPAP vs Mandibular advancement devices and blood pressure in patients with obstructive sleep apnea: a systematic review and meta-analysis. JAMA 2015;314:2280-2293. https://doi.org/10.1001/jama.2015.16303
  66. de Vries GE, Wijkstra PJ, Houwerzijl EJ, Kerstjens HAM, Hoekema A. Cardiovascular effects of oral appliance therapy in obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med Rev 2018;40:50-68.
  67. Baessler A, Nadeem R, Harvey M, et al. Treatment for sleep apnea by continuous positive airway pressure improves levels of inflammatory markers - a meta-analysis. J Inflamm (Lond) 2013;10:13. https://doi.org/10.1186/1476-9255-10-13
  68. Lin X, Chen G, Qi J, Chen X, Zhao J, Lin Q. Effect of continuous positive airway pressure on arterial stiffness in patients with obstructive sleep apnea and hypertension: a meta-analysis. Eur Arch Otorhinolaryngol 2016;273:4081-4088. https://doi.org/10.1007/s00405-016-3914-8
  69. Fu Y, Xia Y, Yi H, Xu H, Guan J, Yin S. Meta-analysis of allcause and cardiovascular mortality in obstructive sleep apnea with or without continuous positive airway pressure treatment. Sleep Breath 2017;21:181-189. https://doi.org/10.1007/s11325-016-1393-1
  70. Anandam A, Patil M, Akinnusi M, Jaoude P, El-Solh AA. Cardiovascular mortality in obstructive sleep apnoea treated with continuous positive airway pressure or oral appliance: an observational study. Respirology 2013;18:1184-1190. https://doi.org/10.1111/resp.12140
  71. Sharples LD, Clutterbuck-James AL, Glover MJ, et al. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea. Sleep Med Rev 2016;27:108-124. https://doi.org/10.1016/j.smrv.2015.05.003
  72. Phillips CL, Grunstein RR, Darendeliler MA, et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med 2013;187:879-887. https://doi.org/10.1164/rccm.201212-2223OC
  73. Kuhn E, Schwarz EI, Bratton DJ, Rossi VA, Kohler M. Effects of CPAP and mandibular advancement devices on health-related quality of life in OSA. Chest 2017;151:786-794. https://doi.org/10.1016/j.chest.2017.01.020
  74. Tregear S, Reston J, Schoelles K, Phillips B. Obstructive sleep apnea and risk of motor vehicle crash: systemic review and metaanalysis. J Clin Sleep Med 2009;5:573-581.
  75. George CF. Reduction in motor vehicle collisions following treatment of sleep apnoea with nasal CPAP. Thorax 2001;56:508-512. https://doi.org/10.1136/thorax.56.7.508
  76. Hoekema A, Stegenga B, Bakker M, Brouwer WH, de Bont LGM, Wijkstra PJ. Stimulated driving in obstructive sleep apnoeahypopnoea; effects of oral appliances and continuous positive airway pressure. Sleep Breath 2007;11:129-138. https://doi.org/10.1007/s11325-006-0093-7
  77. Zhu B, Ma C, Chaiard J, Shi C. Effect of continuous positive airway pressure on glucose metabolism in adults with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sleep Breath 2018;22:287-295. https://doi.org/10.1007/s11325-017-1554-x
  78. Martinez-Ceron E, Fernandez-Navarro I, Garcia-Rio F. Effects of continuous positive airway pressure treatment on glucose metabolism in patients with obstructive sleep apnea. Sleep Med Rev 2016;25:121-130. https://doi.org/10.1016/j.smrv.2015.03.002