DOI QR코드

DOI QR Code

Comparative study of two CAD software programs on consistency between custom abutment design and the output

두 가지 CAD software의 맞춤형 지대주 디자인과 출력물 일치도 비교

  • Lim, Hyun-Mi (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Wan-Sun (Advanced Dental Device Development Institute, Kyungpook National University) ;
  • Son, KeunBaDa (Advanced Dental Device Development Institute, Kyungpook National University)
  • 임현미 (경북대학교 치과대학 치과보철학교실) ;
  • 이규복 (경북대학교 치과대학 치과보철학교실) ;
  • 이완선 (경북대학교 첨단치과의료기기개발연구소) ;
  • 손큰바다 (경북대학교 첨단치과의료기기개발연구소)
  • Received : 2018.04.03
  • Accepted : 2018.05.25
  • Published : 2018.09.29

Abstract

Purpose: This study was aimed to compare the consistency between the custom abutment design and the output in two CAD software programs. Materials and Methods: Customized abutments were designed by using 3Shape Dental System CAD software and Delta9 CAD software on a plaster model with implants (CRM STL file). After milling of the designed abutments, the abutments were scanned with a contact method scanner (Test STL file). We overlaid the Test STL file with each CRM STL file by using inspection software, and then compared the milling reproducibility by measuring the output error of the specimens from each CAD software program. Results: The Delta9 showed better milling reproducibility than 3Shape when comparing the milling errors obtained with a full scan of all specimens (P < .05) and also when comparing the axial wall region specifically according to the axial angle. With 0.9 mm marginal radius, the Delta9 showed better consistency between the design and the output than 3Shape (P < .05). While, anti-rotation form had no significant difference in error between the two systems. When cumulative errors were compared, the Delta9 showed better milling reproducibility in almost cases (P < .05). Conclusion: Delta9 showed a significantly smaller error for most of the abutment design options. This means that it is possible to facilitate generation of printouts with reliable reproducibility and high precision with respect to the planned design.

목적: 두 가지 CAD software에서 각 software의 맞춤형 지대주 디자인과 출력물의 일치도를 비교 평가한다. 연구 재료 및 방법: 3Shape Dental System과Delta9 CAD 소프트웨어를 이용하여 임플란트 식립 석고모델에 맞춤형 지대주를 디자인하였다(CRM STL file).디자인한 지대주를 밀링 한 후, 접촉식 방식으로 스캔하고(Test STL file), Inspection 소프트웨어에서 각 지대주의 Test STL file과 CRM STL file을 중첩하여 오차값을 측정하였다. 결과: 시편의 전체 스캔 오차 비교와 축면 경사각에 따른 축면부위 오차비교에서 Delta9이 더 나은 밀링 재현성을 보였다(P < .05). 마진설정 시, 반경 0.9 mm에서 Delta9의 디자인과 출력물의 일치도가 더 우수했다(P < .05). 반면, Anti-rotation 형태 부여에 따른 유의할 만한 차이는 없었다. 부위별 오차 값 누적 비교에서는 Delta9이 대부분의 시편에서 더 작은 오차 값을 보였다(P < .05). 결론: Delta9이 대부분의 디자인 설정 환경에서 3Shape보다 더 작은 오차 값을 보였다. 이는 Delta9을 사용했을 때, 계획된 디자인과 출력물의 일치도가 3Shape과 유사하거나 더 좋은 출력물을 얻을 수 있음을 의미한다.

Keywords

References

  1. Kim JW, Heo YR, Kim HJ, Chung CH. A comparative study on the fit and screw joint stability of ready-made abutment and CAD-CAM custommade abutment. J Korean Acad Prosthodont 2013;51:276-83. https://doi.org/10.4047/jkap.2013.51.4.276
  2. Priest G. Virtual-designed and computer-milled implant abutments. J Oral Maxillofac Surg 2005;63:22-32.
  3. Alshhrani WM, Al Amri MD. Customized CADCAM healing abutment for delayed loaded implants. J Prosthet Dent 2016;116:176-9. https://doi.org/10.1016/j.prosdent.2016.01.024
  4. Thulasidas S, Givan DA, Lemons JE, O'Neal SJ, Ramp LC, Liu PR. Influence of implant angulation on the fracture resistance of zirconia abutments. J Prosthodont 2015;24:127-35. https://doi.org/10.1111/jopr.12182
  5. Vinnakota DN. Effect of preparation convergence on retention of multiple unit restorations-An in vitro study. Contemp Clin Dent 2015;6:409-13. https://doi.org/10.4103/0976-237X.161904
  6. Corazza PH, Feitosa SA, Borges AL, Della Bona A. Influence of convergence angle of tooth preparation on the fracture resistance of Y-TZP-based allceramic restorations. Dent Mater 2013;29:339-47. https://doi.org/10.1016/j.dental.2012.12.007
  7. Tiu J, Al-Amleh B, Waddell JN, Duncan WJ. Reporting numeric values of complete crowns. Part 2: Retention and resistance theories. J Prosthet Dent 2015;114:75-80. https://doi.org/10.1016/j.prosdent.2015.01.007
  8. Shillingburg HT, Sather DA, Wilson EL, Cain JR, Mitchell DL, Blanco LJ, Kessler JC. Fundamentals of fixed prosthodontics. 4th ed. Hanover Park; Quintessence; 2012. p. 132-3.
  9. Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res 2016;60:72-84. https://doi.org/10.1016/j.jpor.2016.01.003
  10. Yamanishi Y, Yamaguchi S, Imazato S, Nakano T, Yatani H. Effects of the implant design on periimplant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models. J Periodontol 2014;85:e333-8. https://doi.org/10.1902/jop.2014.140107
  11. Komine F, Iwai T, Kobayashi K, Matsumura H. Marginal and internal adaptation of zirconium dioxide ceramic copings and crowns with different finish line designs. Dent Mater J 2007;26:659-64. https://doi.org/10.4012/dmj.26.659
  12. Beuer F, Aggstaller H, Edelhoff D, Gernet W. Effect of preparation design on the fracture resistance of zirconia crown copings. Dent Mater J 2008;27:362-7. https://doi.org/10.4012/dmj.27.362
  13. May KB, Russell MM, Razzoog ME, Lang BR. Precision of fit: the Procera AllCeram crown. J Prosthet Dent 1998;80:394-404. https://doi.org/10.1016/S0022-3913(98)70002-2
  14. Kim CM, Jeon JH, Lee JJ, Kim JH, Kim WC. Precision evaluation of crown prosthesis manufactured by two bur and three bur. J Korean Acad Dent Tech 2016;38:57-62. https://doi.org/10.14347/kadt.2016.38.2.57
  15. Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 2012;28:320-6. https://doi.org/10.1016/j.dental.2011.12.008
  16. International Organization for Standardization. ISO-12836:2015. Dentistry - digitizing devices for CAD/CAM systems for indirect dental restorations - Test methods for assessing accuracy. Available from: https://www.iso.org/standard/68414.html (updated 2018 Sep 12).
  17. Lee GT, Kim JH, Kim WC, Kim JH. Three-dimensional evaluation on the repeatability and reproducibility of dental scanner-based digital models. J Korean Acad Dent Tech 2012;34:213-20. https://doi.org/10.14347/kadt.2012.34.3.213
  18. Persson A, Andersson M, Oden A, Sandborgh-Englund G. A three-dimensional evaluation of a laser scanner and a touch-probe scanner. J Prosthet Dent 2006;95:194-200. https://doi.org/10.1016/j.prosdent.2006.01.003
  19. Sahu N, Lakshmi N, Azhagarasan NS, Agnihotri Y, Rajan M, Hariharan R. Comparison of the effect of implant abutment surface modifications on retention of implant-supported restoration with a polymer based cement. J Clin Diagn Res 2014;8:239-42.
  20. Enkling N, Ueda T, Gholami H, Bayer S, Katsoulis J, Mericske-Stern R. Precision of fit and retention force of cast non-precious-crowns on standard titanium implant-abutment with different design and height. Clin Oral Implants Res 2014;25:451-7.
  21. Huh JB, Shim JS. The factors caused errors in the production process of CAD/CAM prosthesis based on experience. J Korean Dent Assoc 2014;52:332-45.

Cited by

  1. Displacement of Customized Abutments Designed on a Working Cast and in the Oral Cavity: A Comparative In Vivo Study vol.29, pp.1, 2018, https://doi.org/10.1111/jopr.13120