DOI QR코드

DOI QR Code

THE CLASSIFICATION OF SELF-DUAL CODES OVER GALOIS RINGS OF LENGTH 4

  • Received : 2017.09.12
  • Accepted : 2018.03.05
  • Published : 2018.09.30

Abstract

The classification of the self-dual codes over Galois rings GR(p, 2) and $GR(p^2,2)$ of length 4 is completed for all primes p up to equivalence in terms of automorphism group. We obtain all inequivalent classes and the number of each classes of self-dual codes for all primes.

Keywords

References

  1. W.-H. Choi, Mass formula of self-dual codes over Galois rings GR($p^2$, 2), Korean J. Math. 24 (2016), no. 4, 751-764. https://doi.org/10.11568/kjm.2016.24.4.751
  2. W.-H. Choi and Y. H. Park, Self-dual codes over ${\mathbb{Z}}_{p^2}$ of small lengths, Korean J. Math. 25 (2017), no. 3, 379-388. https://doi.org/10.11568/KJM.2017.25.3.379
  3. S. T. Dougherty, J.-L. Kim, and H. Liu, Constructions of self-dual codes over finite commutative chain rings, Int. J. Inf. Coding Theory 1 (2010), no. 2, 171-190. https://doi.org/10.1504/IJICOT.2010.032133
  4. S. T. Dougherty and Y. H. Park, Codes over the p-adic integers, Des. Codes Cryptogr. 39 (2006), no. 1, 65-80. https://doi.org/10.1007/s10623-005-2542-x
  5. F. Q. Gouvea, p-Adic Numbers, second edition, Universitext, Springer-Verlag, Berlin, 1997.
  6. R. W. Hamming, Error detecting and error correcting codes, Bell System Tech. J. 29 (1950), 147-160. https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
  7. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319. https://doi.org/10.1109/18.312154
  8. S. Han, J.-L. Kim, H. Lee, and Y. Lee, Construction of quasi-cyclic self-dual codes, Finite Fields Appl. 18 (2012), no. 3, 613-633. https://doi.org/10.1016/j.ffa.2011.12.006
  9. W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
  10. J.-L. Kim and Y. Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), no. 2, 247-258. https://doi.org/10.1007/s10623-007-9117-y
  11. J.-L. Kim and Y. Lee, An efficient construction of self-dual codes, Bull. Korean Math. Soc. 52 (2015), no. 3, 915-923. https://doi.org/10.4134/BKMS.2015.52.3.915
  12. S. Lang, Algebraic Number Theory, second edition, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994.
  13. R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
  14. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
  15. G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory 46 (2000), no. 3, 1060-1067. https://doi.org/10.1109/18.841186
  16. G. H. Norton and A. Salagean, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506. https://doi.org/10.1007/PL00012382
  17. Y. H. Park, The classification of self-dual modular codes, Finite Fields Appl. 17 (2011), no. 5, 442-460. https://doi.org/10.1016/j.ffa.2011.02.010
  18. V. Pless, The number of isotropic subspaces in a finite geometry, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 39 (1965), 418-421.
  19. Z.-X. Wan, Finite Fields and Galois Rings, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.