THE RANGE OF r-MAXIMUM INDEX OF GRAPHS

JEONG-OK CHOI

Abstract. For a connected graph G, an r-maximum edge-coloring is an edge-coloring f defined on $E(G)$ such that at every vertex v with $d_G(v) \geq r$ exactly r incident edges to v receive the maximum color. The r-maximum index $\chi'_r(G)$ is the least number of required colors to have an r-maximum edge coloring of G. In this paper, we show how the r-maximum index is affected by adding an edge or a vertex. As a main result, we show that for each $r \geq 3$ the r-maximum index function over the graphs admitting an r-maximum edge-coloring is unbounded and the range is the set of natural numbers. In other words, for each $r \geq 3$ and $k \geq 1$ there is a family of graphs $G(r, k)$ with $\chi'_r(G(r, k)) = k$. Also, we construct a family of graphs not admitting an r-maximum edge-coloring with arbitrary maximum degrees: for any fixed $r \geq 3$, there is an infinite family of graphs $F_r = \{G_k : k \geq r + 1\}$, where for each $k \geq r + 1$ there is no r-maximum edge-coloring of G_k and $\Delta(G_k) = k$.

1. Introduction

In this paper we consider only simple graphs. The edge-connectivity of a connected graph G is the least integer k such that there exist k edges whose deletion increases the number of components of the remaining graph. We denote the edge-connectivity of G by $\kappa'(G)$. In particular, we call an edge a cut-edge of a nontrivial connected graph G if $G - e$ is not connected. A k-factor of a graph G is a k-regular spanning subgraph of G. Given an edge-coloring f of G, not necessarily proper, a maximum color of a vertex $v \in V(G)$ is $\max_{e \in E_v(G)} f(e)$, where $E_v(G)$ is the set of incident edges to v. A color c appears l times at v under f if exactly l incident edges to v receive the color c.

For hypergraphs a vertex coloring is called a unique-maximum coloring if the maximum color in each edge appears exactly once on the vertices of the edge. There are results on unique-maximum coloring of hypergraphs in [1]. For a graph this coloring is just a proper coloring of the vertices. For a planar graph G, we can define an associated hypergraph with $V(G)$ as the vertex set and the
faces as hyperedges. This unique-maximum coloring is called *unique-maximum coloring of a planar graph with respect to faces*. In other words, it is a vertex coloring such that for every face the maximum color occurs exactly once on the vertices of the face. The *unique-maximum index* of a planar graph G is the minimum number of colors for G to have a unique-maximum coloring. The parameter is studied in [2,3].

Without a restriction on planar graphs, a similar concept on edges can be applied: a *unique-maximum edge-coloring* of a graph is an edge-coloring such that at every vertex the maximum color appears exactly once [4]. In [4] S. Jendrol’ and Vrbjarová generalized the concept by fixing the number of maximum colors appearing at each vertex. For any natural number r, we say that a graph G has an *r-maximum edge-coloring* if there is an edge-coloring f defined on $E(G)$ such that at every vertex v with $d_G(v) \geq r$ the maximum color appears r times at v under f. If $\Delta(G)$ is smaller than r, then r-maximum coloring problems become trivial by using one color for all the edges. In fact, every edge-coloring is an r-maximum edge-coloring. On the other hand, if $\Delta(G)$ is larger than r, properties on r-maximum coloring reflect various aspects of structure of graphs. For example, the existence of an r-factor of a graph implies the existence of an r-maximum coloring of the graph. Note that the converse is not true. (See also [6], [7].)

The *r-maximum index* of a graph G, denoted by $\chi'_r(G)$, is the smallest number of required colors to have an r-maximum edge coloring of G. A natural question on r-maximum index is what the possible numbers for $\chi'_r(G)$ will be. When $r \leq 2$, every graph admits an r-maximum edge coloring. Moreover, $\chi'_r(G) \leq 3$ for $r = 1, 2$.

Theorem 1.1 ([4]). For $r = 1, 2$, $\chi'_r(G) \leq 3$ for all connected nontrivial graph G.

In addition, they characterized graphs according to the value of $\chi'_r(G) = i$, $i = 1, 2, 3$. On the other hand, not every graph has an r-maximum edge-coloring when $r \geq 3$. For $r \geq 3$ they expected $\chi'_r(G) \leq 3$ for every graph G admitting an r-maximum edge-coloring.

As answering this question, we show that for each $r \geq 3$ the r-maximum index function over the graphs admitting an r-maximum edge-coloring is unbounded and the range is the set of natural numbers. In other words, for each $r \geq 3$ and $k \geq 1$ there is a family of graphs $G(r,k)$ with $\chi'_r(G(r,k)) = k$. Also, we construct a family of graphs not admitting an r-maximum edge-coloring with arbitrary maximum degrees: for any fixed $r \geq 3$, there is an infinite family of graphs $\mathcal{F}_r = \{G_k : k \geq r + 1\}$, where for each $k \geq r + 1$ there is no r-maximum edge-coloring of G_k and $\Delta(G_k) = k$.

We make a remark that there is a similar name for the parameter called a *maximum edge coloring* or known as the Maximum Edge Coloring (MEC) problem. This maximum edge coloring is a generalization of a proper edge coloring. (For this topic, see [5].) The r-maximum edge-coloring is not related
to a proper edge-coloring, and it is completely different from the maximum edge coloring. In this paper, we only discuss on \(r \)-maximum edge-coloring.

In the next section, we first explore effects of an \(r \)-maximum edge-coloring and the \(r \)-maximum index as adding an edge in many different ways.

2. Preliminaries

The maximum edge-coloring of a graph is related to \(r \)-regular subgraphs. It is trivial to see the following results.

Proposition 2.1. If \(G \) has an \(r \)-factor, then \(\chi'(G) \leq 2 \).

Proposition 2.2. If \(G \) has an \(r \)-maximum edge-coloring \(f \), then all the incident edges to a vertex of degree \(r \) must get the same color under \(f \).

Proposition 2.3. Suppose that \(\delta(G) \geq r \) and \(G \) has an \(r \)-maximum edge-coloring \(f \). Let \(c \) be the maximum value of \(f \). Then the induced subgraph by the edges receiving \(c \) is \(r \)-regular.

The \(r \)-maximum index of a graph is not inherited from its supergraph. All four combinations are possible. For example, \(\chi'(K_r) = 1 \) but \(\chi'(K_{2r}) = 2 \). But there is a \(2r \)-vertex graph whose \(r \)-maximum index does not exist [4]. We provide sufficient conditions to make an \(r \)-maximum index as an invariant under some operations on a graph.

Proposition 2.4. Given a graph \(H \) admitting an \(r \)-maximum edge-coloring with \(\chi'(H) > 1 \), let \(H' \) be a graph obtained by adding a new leaf to a vertex \(v \) with \(d_H(v) > r \). Then \(\chi'(H') \leq \chi'(H) \).

Proof. For any given \(r \)-maximum edge-coloring of \(H \), the number of colors that all incident edges to \(v \) received is at least two because \(d_H(v) \geq r \). If we assign a smaller color than the maximum color at \(v \) to the newly added edge, then it is still an \(r \)-maximum edge-coloring. Therefore, \(\chi'(H') \leq \chi'(H) \). \(\square \)

By arguing similarly we obtain the following fact.

Proposition 2.5. Given a graph \(H \) admitting an \(r \)-maximum edge-coloring with \(\chi'(H) > 1 \), let \(H' \) be a graph obtained by adding a new edge connecting two vertices \(u \) and \(v \) with \(d_H(u), d_H(v) > r \). Then \(\chi'(H') \leq \chi'(H) \).

Proof. Since both of \(d_H(u) \) and \(d_H(v) \) are strictly greater than \(r \), for each of \(u \) and \(v \) there is an incident edge that has a non-maximum color among the incident edges to the vertex. Let \(c_u \) and \(c_v \) be a non-maximum color at \(u \) and \(v \), respectively. Without loss of generality we assume that \(c_u \leq c_v \). We assign \(c_u \) for the color of the newly added edge. The edge-coloring of \(H' \) is now an \(r \)-maximum edge-coloring. Therefore, \(\chi'(H') \leq \chi'(H) \). \(\square \)

For example, note that the star \(K_{m,1} \) with \(m \geq r + 1 \) has an \(r \)-maximum edge-coloring. For a graph \(G \) admitting an \(r \)-maximum edge-coloring assume that \(G \) has a vertex \(v \) of degree at least \(r + 1 \). Let \(u \) be the vertex of degree
m in $K_{m,1}$. We denote $G_1 + G_2$ the disjoint union of two graphs G_1 and G_2.

If $G' = (G + K_{m,1}) \cup \{uw\}$, then $\chi'_r(G') \leq \max\{\chi'_r(G), 2\}$ by Proposition 2.5. We generalize this observation as follows.

Corollary 2.6. For G_i with $i = 1, 2$ suppose that each graph G_i admits an r-maximum edge-coloring. Also suppose that $d_{G_1}(u) > r$ and $d_{G_2}(v) > r$ for some vertices $u \in V(G_1)$ and $v \in V(G_2)$. Let $G' = (G_1 + G_2) \cup \{uw\}$. Then $\chi'_r(G') \leq \max\{\chi'_r(G_1), \chi'_r(G_2)\}$.

Theorem 2.7. If a connected n-vertex graph G has only one vertex of degree larger than r which is not a cut-vertex and all the rest of the vertices have degree r, then G does not have an r-maximum edge-coloring.

Proof. Suppose to the contrary that G has an r-maximum edge-coloring, say f. Let u be the vertex of maximum degree. Then $\chi'_r(G) > 1$. Otherwise, the unique color appears more than r times at u. Therefore, there are at least two edges e_1 and e_2 incident to u such that $f(e_1) \neq f(e_2)$. Let x be the end vertex of e_1 different from u and y be the end vertex of e_2 different from u. Since u is not a cut-vertex, $G - u$ is connected. Therefore, there is an x, y-path in $G - u$, say this path $xv_1v_2 \cdots v_ty$ for some $t \geq 0$. Then by applying Proposition 2.2 to f on G, the edge xv_1 must get the same color as $f(e_1)$, and we repeat this argument until we reach the edge v_ty. If $t = 0$, xy must get the same color as $f(e_1)$ and $f(e_2)$. Now we have a contradiction: $f(e_1) = f(v_ty) = f(e_2)$.

There is a relation between the edge-connectivity and r on the maximum edge-coloring. If $r \leq \kappa'(G)$, then G admits an r-maximum edge-coloring if and only if G has an r-factor since $r \leq \kappa'(G) \leq \delta(G)$.

3. Main results

In this section we show that for each $r \geq 3$, $\chi'_r(G)$ is arbitrary.

It is easy to see that we can characterize all graphs admitting an r-maximum edge-coloring according to the values 1, 2, and at least 3 for r-maximum index in the following way.

Theorem 3.1. Let G be a connected graph. Then

1. $\chi'_r(G) = 1$ if and only if $\Delta(G) \leq r$.
2. $\chi'_r(G) = 2$ if and only if $\Delta(G) > r$ and G has a spanning subgraph H such that $d_H(v) = r$ if $d_G(v) \geq r$ and $d_H(u) = t$ for some $t < r$ if $d_G(v) < r$.
3. For G admitting an r-maximum edge-coloring, $\chi'_r(G) \geq 3$ if and only if G does not satisfies any of the conditions above.

Note that in particular, if $\delta(G) \geq r$, a spanning subgraph H satisfying the condition in (2) in Theorem 3.1 is an r-factor of G.

It is trivial to see that $\chi'_r(G) = 1$ if $r \geq \Delta(G)$. However, $\chi'_r(G)$ may not exist if $r < \Delta(G)$. In fact, it is known that for every $r \geq 3$ there is a graph
For any fixed $r \geq 3$, there is an infinite family of graphs $F_r = \{G_k : k \geq r + 1\}$, where for each $k \geq r + 1$ there is no r-maximum edge-coloring of G_k and $\Delta(G_k) = k$.

Proof. Let H be an r-regular graph such that $\alpha'(H) \geq 2$ and $\kappa'(H) \geq 3$, where $\alpha'(H)$ is the size of a maximum matching in H. For any $r \geq 3$, such H exists, for example $H = K_{r+1}$. We pick two independent edges $e = xy$ and $e' = uv$. Let H_i be an i-th copy of H. In this case we rename the vertices and the edges by putting subscript i. For example, the corresponding vertex to x in H_i is denoted by x_i.

We construct G_k as follows:

1. We take k copies of H, and take disjoint union of them: we start with $H_1 + H_2 + \ldots + H_k$.
2. We delete the edges: $\{e_1, e_2, \ldots, e_k, e'_1, \ldots, e'_k\}$ from (1).
3. Add a new vertex z to (2).
4. Add new edges: $\{y_1x_2, y_2x_3, \ldots, y_{k-1}x_k, y_kx_1\}$ to (2).
5. Add new edges: $\{u_iz, v_iz : i = 1, 2, \ldots, k\}$ to (2).

(Case 1) r is odd.

Let $G = G_{\frac{r+1}{2}}$. Then $\Delta(G) = r + 1 = d_G(z)$. All the rest of the vertices have degree r.

Claim 1. G does not admit an r-maximum edge-coloring.

Proof. Suppose that there is an r-maximum edge-coloring of G, say f. Let $c = f(u_1z)$. Note that all the other incident edges to u_1 appear in H_1 and must receive the color c since the degree of u_1 in G is r. Moreover, by Proposition 2.2, all the incident edges to each vertex except for z must receive only one (maximum) color. For every $i = 1, 2, \ldots, \frac{r+1}{2}$, the graph $H_i - \{e_i, e'_i\}$ is connected since $\kappa'(H_i) \geq 3$. Therefore, for any vertex $w \in V(H_1) - \{u_1\}$, there is a w, u_1-path in $H_1 - \{e_1, e'_1\}$. Applying the same argument as in the proof of Theorem 2.7, we conclude that in G the edges from $H_1 - \{e_1, e'_1\}$ must receive the color c under f. In fact, the incident edges of a and the incident edges of b must get the same color under f whenever there is an a, b-path in G for vertices a and b with $d_G(a) = d_G(b) = r$. Hence, we get $f(u_i z) = f(v_j z)$ and $f(u_i z) = f(u_j z)$ for all i, j. Then c appears $r + 1$ times at z under f, which is contradiction. \hfill \Box

If we add arbitrarily many leaves making z as their neighbor, then we can make the degree of z become an arbitrary size at least $r + 2$. In this case, by repeating the proof of Claim 1, the color of the previously existing edges must get the same color anyway. This forces that all $r + 1$ incident edges to
z must get the maximum color. Therefore this new graph does not have an r-maximum edge-coloring.

(Case 2) \(r \) is even.

We let \(G = G_{2+1}^r \). Then \(\Delta(G) = r + 2 \). For larger maximum degree we add leaves to \(z \) as in \(r \) odd case. In this case we can make \(\Delta(G) \geq r + 2 \). Then the proof is exactly the same as above.

For \(\Delta(G) = r + 1 \) when \(r \) is even, we make the following construction: from the above graph \(G \) with \(\Delta(G) = r + 2 \), let \(G' \) be the graph adding a new vertex \(w \) and a new edge \(v_1w \) after deleting the edge \(v_1z \). Then \(\Delta(G') = r + 1 \). Applying the same argument from above a color assigned on \(u_1z \) forces the rest of the edges of \(G' \) to have the same color. Therefore, it is not possible to admit an \(r \)-maximum edge-coloring.

\[\square \]

In a graph admitting an \(r \)-maximum edge-coloring, a structure that forces a certain color on certain edges may require many colors to be used. In [4] the authors proposed an open problem asking whether \(\chi'_r(G) \leq 3 \) for every \(r \geq 3 \) and for every graph \(G \) admitting an \(r \)-maximum edge-coloring. But unlike the case \(r = 2 \), from \(r \geq 3 \) we show that some graphs require many colors to allow an \(r \)-maximum coloring. Our construction requires \(r \geq 3 \) and with \(r = 2 \) the construction does not contain a structure forcing many colors anymore. We will construct a family of graphs using \(H^m_n \), which is described below. (Figure 1 presents \(H^3_3 \).)

Construction of \(H^m_n \):

- Let \(V = \{v_1, v_2, \ldots, v_n\} \).
- Let \(W = \{w_1^1, \ldots, w_1^m, w_2^1, \ldots, w_2^m, \ldots, w_n^1, \ldots, w_n^m\} \).
- Let \(X = \{x_1^1, \ldots, x_1^m, x_2^1, \ldots, x_2^m, \ldots, x_n^1, \ldots, x_n^m\} \).
- Let \(U = \{u_1^1, \ldots, u_1^m, u_2^1, \ldots, u_2^m, \ldots, u_n^1, \ldots, u_n^m\} \).
- \(V(H^m_n) = V \cup W \cup X \cup U \).

There are three types of edges.

- **Edges between \(V \) and \(W \):** Each \(v_i \) has exactly \(m \) neighbors in \(W: w_i^1, \ldots, w_i^m \).
- **Edges between \(W \) and \(X \):** Each \(x_i^j \) has exactly \(m - 1 \) neighbors in \(W \): starting from \(w_i^j \), take the first consecutive \(m - 1 \) vertices in order in \(W \) as neighbors of \(x_i^j \) reading subscripts and superscripts modulo \(m \).
- **Edges between \(X \) and \(U \):** Each \(x_i^j \) in \(X \) has only one neighbor \(u_i^j \) in \(U \).

We see that every vertex in \(U \) is a leaf. All other vertices have degree \(m \).

Lemma 3.3. For any \(m \geq 3 \) and \(n \geq 1 \), \(\chi'_m(H^m_n) = 1 \). In any \(m \)-maximum edge-coloring of \(H^m_n \), any color \(c \) assigned on the edge incident to a leaf forces \(c \) as the color for the rest of the edges.
Figure 1: H_3^3

Two vertices w_1^1 and x_1^1 are adjacent in H_3^3.
There are 9 leaves and 21 vertices of degree 3.

Proof. Assigning the same color to all edges satisfies the condition for an m-maximum edge-coloring. Now we will show that edge-coloring with one color is the only possible way.

Consider an m-maximum edge-coloring of H_m^n. Let c be the color that was assigned on an edge $e = x_1^1u_1^1$. Since the degree of x_1^1 is m, all incident edges to this vertex must receive the same color. In other words, if a color appears at a vertex of degree m, then that color is the only color appearing at the vertex.

Note that for any two vertices y,y' with degree m, if there is a y,y'-path via the vertices of degree m, then y and y' must get the same color for their incident edges. Note that H_m^n is connected. In fact, we can see that for any x_i^t and $w_j^{t'}$, there is an $x_i^t,w_j^{t'}$-path using vertices only in $W \cup X$. To see this it is sufficient to show that there is an $x_i^1,w_j^{t'}$-path using vertices only in $W \cup X$. It is because that x_i^1 and $w_j^{t'}$ are always adjacent for every i. Once the vertices in $W \cup X$ allow only one color c, then the vertices in $V \cup U$ are forced to allow color c only. \hfill \Box

Given an integer $L \geq 2$, let $H_m^n(k)$ be the k-th copy of H_m^n for $k = 1, 2, \ldots, L$.
Let $G(m, L)$ be the graph constructed in the following way:

- Concatenate $H_m^n(k)$ and $H_m^n(k+1)$ for $k = 1, 2, \ldots, L-1$.
- Identify u_1^i in $V(H_m^n(k))$ and $v_{m(i-1)+t}$ in $V(H_m^n(k+1))$ for $1 \leq i \leq m^k$ and $1 \leq t \leq m$.

Note that there are only three values for the degrees: 1, m, and $m+1$. The leaves of $G(m, L)$ are the leaves of $H_m^n(L)$.

Theorem 3.4. $\chi'_r(G(r, L)) = L$ for $r \geq 3$. In other words, for any fixed integer $r \geq 3$, the r-maximum index function (over the graphs admitting an r-maximum edge-coloring) is unbounded and the range is the set of natural numbers.
Proof. Let \(r \geq 3 \) and consider \(G(r, L) \). First of all, if we assign color \(k \) for the edges of \(E(H^{r}_{L}(k)) \) in \(G(r, L) \), then this edge-coloring becomes an \(r \)-maximum edge-coloring. Therefore, \(\chi'_{r}(G(r, L)) \leq L \).

Let \(f \) be an optimal \(r \)-maximum edge-coloring of \(G(r, L) \). Let \(e = f(e) \), where \(e \) is the edge incident to a leaf in \(H^{r}_{L}(L) \). By the proof of Lemma 3.3 all the edges of \(H^{r}_{L}(L) \) must receive color \(c \). Now in \(G(r, L) \) the color \(c \) already appeared \(r \) times at every vertex of degree \(m+1 \). Therefore, the uncolored incident edge at every such vertex must receive a smaller color, say \(c_1 \). Applying the same argument, all the edges of \(H^{r}_{L-1}(L-1) \) will get color \(c_1 \). We inductively apply this argument to conclude that all the edges of \(H^{r}_{L-i}(L-i) \) will get color \(c_i \), where \(c > c_1 > \cdots > c_{i-1} > c_i > \cdots > c_{L-1} \) and \(i = 0, 1, \ldots, L-1 \). Therefore, \(f \) requires at least \(L \) distinct values, and \(\chi'_{r}(G(r, L)) \geq L \). □

In [4] the family of trees and the family of complete graphs were characterized in terms of an \(r \)-maximum index. They are bounded above by \(3 \) for every \(r \). Note that \(G(r, L) \) is bipartite for \(r \geq 3 \). Therefore, the \(r \)-maximum index function is not bounded over the family of bipartite graphs. It would be an interesting question whether there is any well-known family of graphs that has a bounded range for the \(r \)-maximum index function when \(r \geq 3 \).

Remark 3.5. Note that the above construction with \(G(2, L) \) does not give the same conclusion as in Theorem 3.4. The graph \(H^{2}_{L}(k) \) is disconnected for each \(k \), and \(G(2, L) \) is a tree. Therefore, in \(G(2, L) \), at any level \(k \) a color assigned on an edge incident to a leaf does not necessarily force the same color for the rest of the edges in the copy \(H^{2}_{L}(k) \).

References

Jeong-Ok Choi
Division of Liberal Arts and Sciences
Gwangju Institute of Science and Technology
Gwangju 61005, Korea
Email address: jchoi351@gist.ac.kr