DOI QR코드

DOI QR Code

EXISTENCE OF SOLUTIONS FOR FRACTIONAL p&q-KIRCHHOFF SYSTEM IN UNBOUNDED DOMAIN

  • Received : 2017.09.27
  • Accepted : 2018.03.08
  • Published : 2018.09.30

Abstract

In this paper, we investigate the fractional p&q-Kirchhoff type system $$\{M_1([u]^p_{s,p})(-{\Delta})^s_pu+V_1(x){\mid}u{\mid}^{p-2}u\\{\hfill{10}}={\ell}k^{-1}F_u(x,\;u,\;v)+{\lambda}{\alpha}(x){\mid}u{\mid}^{m-2}u,\;x{\in}{\Omega}\\M_2([u]^q_{s,q})(-{\Delta})^s_qv+V_2(x){\mid}v{\mid}^{q-2}v\\{\hfill{10}}={\ell}k^{-1}F_v(x,u,v)+{\mu}{\alpha}(x){\mid}v{\mid}^{m-2}v,\;x{\in}{\Omega},\\u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}{\subset}{\mathbb{R}}^N$ is an unbounded domain with smooth boundary ${\partial}{\Omega}$, and $0<s<1<p{\leq}q$ and sq < N, ${\lambda},{\mu}>0$, $1<m{\leq}k<p^*_s$, ${\ell}{\in}R$, while $[u]^t_{s,t}$ denotes the Gagliardo semi-norm given in (1.2) below. $V_1(x)$, $V_2(x)$, $a(x):{\mathbb{R}}^N{\rightarrow}(0,\;{\infty})$ are three positive weights, $M_1$, $M_2$ are continuous and positive functions in ${\mathbb{R}}^+$. Using variational methods, we prove existence of infinitely many high-energy solutions for the above system.

Keywords

References

  1. G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in ${\mathbb{R}}^N$, J. Differential Equations 255 (2013), no. 8, 2340-2362. https://doi.org/10.1016/j.jde.2013.06.016
  2. Z. Bai, S. Zhang, S. Sun, and C, Yin, Monotone iterative method for a class of fractional differential equations, Electronic Journal of Differential Equations 2016 (2016), no. 6, 1-8.
  3. T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $R^N$, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1725-1741. https://doi.org/10.1080/03605309508821149
  4. L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations, 37-52, Abel Symp., 7, Springer, Heidelberg, 2012.
  5. X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity 26 (2013), no. 2, 479-494. https://doi.org/10.1088/0951-7715/26/2/479
  6. B. Cheng, Multiplicity of nontrivial solutions for system of nonhomogenous Kirchhoff-type equations in $R^N$, Math. Methods Appl. Sci. 38 (2015), no. 11, 2336-2348. https://doi.org/10.1002/mma.3224
  7. Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett. 51 (2016), 48-54. https://doi.org/10.1016/j.aml.2015.07.002
  8. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
  9. X. Dong, Z. Bai, and S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl. 2017, Paper No. 5, 15 pp.
  10. L. Duan and L. Huang, Infinitely many solutions for sublinear Schrodinger-Kirchhoff-type equations with general potentials, Results Math. 66 (2014), no. 1-2, 181-197. https://doi.org/10.1007/s00025-014-0371-9
  11. H. Fan and X. Liu, Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain, Nonlinear Anal. 114 (2015), 186-196. https://doi.org/10.1016/j.na.2014.07.012
  12. A. Fiscella, P. Pucci, and S. Saldi, Existence of entire solutions for Schrodinger-Hardy systems involving two fractional operators, Nonlinear Anal. 158 (2017), 109-131. https://doi.org/10.1016/j.na.2017.04.005
  13. Y. Guo and J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrodinger-Kirchhoff-type equations, J. Math. Anal. Appl. 428 (2015), no. 2, 1054-1069. https://doi.org/10.1016/j.jmaa.2015.03.064
  14. G. Kirchhoff, Mechanik, Leipzig, Teubner, 1883.
  15. L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl. 435 (2016), no. 1, 955-967. https://doi.org/10.1016/j.jmaa.2015.10.075
  16. D. Liu and P. Zhao, Multiple nontrivial solutions to a p-Kirchhoff equation, Nonlinear Anal. 75 (2012), no. 13, 5032-5038. https://doi.org/10.1016/j.na.2012.04.018
  17. X. Miang, G. Bisci, G. Tian, and B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity 29 (2016), no. 2, 357-374. https://doi.org/10.1088/0951-7715/29/2/357
  18. G. Molica Bisci, V. D. Radulescu, and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.
  19. N. Nyamoradi, Existence of three solutions for Kirchhoff nonlocal operators of elliptic type, Math. Commun. 18 (2013), no. 2, 489-502.
  20. P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in ${\mathbb{R}}^N$ involving nonlocal operators, Rev. Mat. Iberoam. 32 (2016), no. 1, 1-22. https://doi.org/10.4171/RMI/879
  21. P. Pucci, M. Xiang, and B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), no. 1, 27-55. https://doi.org/10.1515/anona-2015-0102
  22. M. Struwe, Variational Methods, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 34, Springer-Verlag, Berlin, 2000.
  23. L.-L. Wang and Z.-Q. Han, Multiple small solutions for Kirchhoff equation with local sublinear nonlinearities, Appl. Math. Lett. 59 (2016), 31-37. https://doi.org/10.1016/j.aml.2016.03.003
  24. M. Xiang, B. Zhang, and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. A. 471 (2015), no. 2177, 20150034, 14 pp.
  25. M. Xiang, B. Zhang, and V. D. Radulescu, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations 260 (2016), no. 2, 1392-1413. https://doi.org/10.1016/j.jde.2015.09.028
  26. M. Xiang, B. Zhang, and V. D. Radulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity 29 (2016), no. 10, 3186-3205.
  27. M. Xiang, B. Zhang, and Z. Wei, Existence of solutions to a class of quasilinear Schrodinger systems involving the fractional p-Laplacian, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 107, 15 pp. https://doi.org/10.1186/s13662-016-0747-0