DOI QR코드

DOI QR Code

A NOTE ON THE GENERALIZED HEAT CONTENT FOR LÉVY PROCESSES

  • Received : 2017.09.27
  • Accepted : 2018.01.30
  • Published : 2018.09.30

Abstract

Let $X=\{X_t\}_{t{\geq}0}$ be a $L{\acute{e}}vy$ process in ${\mathbb{R}}^d$ and ${\Omega}$ be an open subset of ${\mathbb{R}}^d$ with finite Lebesgue measure. The quantity $H_{\Omega}(t)={\int_{\Omega}}{\mathbb{P}}^x(X_t{\in}{\Omega})$ dx is called the heat content. In this article we consider its generalized version $H^{\mu}_g(t)={\int_{\mathbb{R}^d}}{\mathbb{E}^xg(X_t){\mu}(dx)$, where g is a bounded function and ${\mu}$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of $L{\acute{e}}vy$ processes.

Keywords

References

  1. L. Acuna Valverde, Heat content estimates over sets of finite perimeter, J. Math. Anal. Appl. 441 (2016), no. 1, 104-120. https://doi.org/10.1016/j.jmaa.2016.03.087
  2. L. Acuna Valverde, On the one dimensional spectral heat content for stable processes, J. Math. Anal. Appl. 441 (2016), no. 1, 11-24. https://doi.org/10.1016/j.jmaa.2016.03.086
  3. L. Acuna Valverde, Heat content for stable processes in domains of ${\mathbb{R}}^d$, J. Geom. Anal. 27 (2017), no. 1, 492-524. https://doi.org/10.1007/s12220-016-9688-9
  4. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
  5. D. Applebaum, Levy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
  6. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987.
  7. K. Bogdan, T. Grzywny, and M. Ryznar, Density and tails of unimodal convolution semigroups, J. Funct. Anal. 266 (2014), no. 6, 3543-3571. https://doi.org/10.1016/j.jfa.2014.01.007
  8. W. Cygan and T. Grzywny, Heat content for convolution semigroups, J. Math. Anal. Appl. 446 (2017), no. 2, 1393-1414. https://doi.org/10.1016/j.jmaa.2016.09.051
  9. J. E. Figueroa-Lopez, Small-time asymptotics for Levy processes. , Statistics & Probability Letters 78 (2008), 3355-3365. https://doi.org/10.1016/j.spl.2008.07.012
  10. B. Galerne, Computation of the perimeter of measurable sets via their covariogram: Applications to random sets, Image Analysis & Stereology 30 (2011), no. 1, 39-51. https://doi.org/10.5566/ias.v30.p39-51
  11. T. Grzywny, On Harnack inequality and Holder regularity for isotropic unimodal Levy processes, Potential Anal. 41 (2014), no. 1, 1-29. https://doi.org/10.1007/s11118-013-9360-y
  12. J. Jacod, Asymptotic properties of power variations of Levy processes, ESAIM Probab. Stat. 11 (2007), 173-196. https://doi.org/10.1051/ps:2007013
  13. V. Knopova and R. L. Schilling, A note on the existence of transition probability densities of Levy processes, Forum Math. 25 (2013), no. 1, 125-149.
  14. F. Kuhn and R. L. Schilling, On the domain of fractional Laplacians and related generators of Feller processes, Preprint: arXiv:1610.08197, 2016.
  15. W. E. Pruitt, The growth of random walks and Levy processes, Ann. Probab. 9 (1981), no. 6, 948-956. https://doi.org/10.1214/aop/1176994266
  16. S. I. Resnick, Heavy-Tail Phenomena, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2007.
  17. K. Sato, Levy Processes and Infinitely Divisible Distributions, translated from the 1990 Japanese original, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999.
  18. M. van den Berg, Heat content and Brownian motion for some regions with a fractal boundary, Probab. Theory Related Fields 100 (1994), no. 4, 439-456. https://doi.org/10.1007/BF01268989
  19. M. van den Berg, Heat flow and perimeter in ${\mathbb{R}}^m$, Potential Anal. 39 (2013), no. 4, 369-387. https://doi.org/10.1007/s11118-013-9335-z
  20. M. van den Berg, E. B. Dryden, and T. Kappeler, Isospectrality and heat content, Bull. Lond. Math. Soc. 46 (2014), no. 4, 793-808. https://doi.org/10.1112/blms/bdu035
  21. M. van den Berg and P. Gilkey, Heat flow out of a compact manifold, J. Geom. Anal. 25 (2015), no. 3, 1576-1601. https://doi.org/10.1007/s12220-014-9485-2
  22. M. van den Berg and K. Gittins, Uniform bounds for the heat content of open sets in Euclidean space, Differential Geom. Appl. 40 (2015), 67-85. https://doi.org/10.1016/j.difgeo.2015.01.010
  23. M. van den Berg and J.-F. Le Gall, Mean curvature and the heat equation, Math. Z. 215 (1994), no. 3, 437-464. https://doi.org/10.1007/BF02571723