DOI QR코드

DOI QR Code

UNIQUENESS OF SOLUTIONS OF A CERTAIN NONLINEAR ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS

  • Lee, Yong Hah (Department of Mathematics Education Ewha Womans University)
  • Received : 2017.10.20
  • Accepted : 2018.03.16
  • Published : 2018.09.30

Abstract

In this paper, we prove that if every bounded ${\mathcal{A}}$-harmonic function on a complete Riemannian manifold M is asymptotically constant at infinity of p-nonparabolic ends of M, then each bounded ${\mathcal{A}}$-harmonic function is uniquely determined by the values at infinity of p-nonparabolic ends of M, where ${\mathcal{A}}$ is a nonlinear elliptic operator of type p on M. Furthermore, in this case, every bounded ${\mathcal{A}}$-harmonic function on M has finite energy.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), no. 2, 355-374. https://doi.org/10.1090/S0894-0347-1990-1030656-6
  2. J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119-128.
  3. T. Coulhon and L. Saloff-Coste, Varietes riemanniennes isometriques a l'infini, Rev. Mat. Iberoamericana 11 (1995), no. 3, 687-726.
  4. J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993.
  5. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1975.
  6. I. Holopainen, Solutions of elliptic equations on manifolds with roughly Euclidean ends, Math. Z. 217 (1994), no. 3, 459-477. https://doi.org/10.1007/BF02571955
  7. I. Holopainen, Volume growth, Green's functions, and parabolicity of ends, Duke Math. J. 97 (1999), no. 2, 319-346. https://doi.org/10.1215/S0012-7094-99-09714-4
  8. M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), no. 3, 391-413. https://doi.org/10.2969/jmsj/03730391
  9. M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan 38 (1986), no. 2, 227-238. https://doi.org/10.2969/jmsj/03820227
  10. Y. H. Lee, Solutions of a certain nonlinear elliptic equation on Riemannian manifolds, Nagoya Math. J. 162 (2001), 149-167. https://doi.org/10.1017/S0027763000007844
  11. P. Li and L.-F. Tam, Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set, Ann. of Math. (2) 125 (1987), no. 1, 171-207. https://doi.org/10.2307/1971292
  12. P. Li and L.-F. Tam, Green's functions, harmonic functions, and volume comparison, J. Differential Geom. 41 (1995), no. 2, 277-318. https://doi.org/10.4310/jdg/1214456219
  13. Z. Liu, Ball covering property and nonnegative Ricci curvature outside a compact set, in Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 459-464, Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993.
  14. J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51, American Mathematical Society, Providence, RI, 1997.
  15. L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), no. 2, 417-450. https://doi.org/10.4310/jdg/1214448748
  16. C. J. Sung, L.-F. Tam, and J. Wang, Bounded harmonic maps on a class of manifolds, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2241-2248. https://doi.org/10.1090/S0002-9939-96-03246-7
  17. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. https://doi.org/10.1002/cpa.3160280203