Inhibitory Effect of Sparassis crispa (Wulf.) Extract on Monosodium Iodoacetate Induced Osteoarthritis

꽃송이버섯 추출물의 Monosodium Iodoacetate로 유도된 골관절염 억제 효과

  • 김은남 (계명대학교 약학대학) ;
  • 노성수 (대구한의대학교 한의과대학) ;
  • 정길생 (계명대학교 약학대학)
  • Received : 2018.09.07
  • Accepted : 2018.09.21
  • Published : 2018.09.30

Abstract

Sparassis crispa (Wulf.) is an edible/medicinal mushroom and has been reported to biological activities such as antitumor, anti-angiogenesis, antioxidant and wound healing. However, there have not been many researches on osteoarthritis of S. crispa. The aim of this study was to investigate the effects of S. crispa extract on rats with osteoarthritis induced by MIA. Osteoarthritis is a gradually developmental disease that early stage, causes joint stiffness and complains of joint pain. In addition, it gives rise to edema and hypo-function. The results of this study, S. crispa extract effectively inhibited ROS production, increased the production of antioxidant protein SOD and catalase in knee joint cartilage tissue. In addition, S. crispa extract inhibited the expression of pro-inflammatory cytokines and enzymes such as NOX4 and $P47^{phox}$, which are involved in the expression of COX-2, iNOS and the production of ROS. Also, S. crispa extract inhibited the destruction of synovial tissue, cartilage tissue and proteoglycans in articular cartilage in rats.

Keywords

References

  1. Kirk, P. M., Cannon, P. F., David, J. C. and Stalpers, J. A. (2003) Ainsworth & Bisby's Dictionary of the Fungi. Lichenologist. 35: 365-366. https://doi.org/10.1016/S0024-2829(03)00055-0
  2. Oh, D. S., Park, J. M., Park, H., Ka, K. H. and Chun, W. J. (2009) Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa). Korean J. Mycol. 37: 33-40. https://doi.org/10.4489/KJM.2009.37.1.033
  3. Kim, M. Y., Seguin, P., Ahn, J. K., Kim, J. J., Chun, S. C., Kim, E. H., Seo, S. H., Kang, E. Y., Kim, S. L. and Park, Y. J. (2008) Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agr. Food Chem. 56: 7265-7270. https://doi.org/10.1021/jf8008553
  4. Wasser, S. P. and Weiss, A. L. (1999) Medicinal properties of substances occurring in higher basidomycetes mushrooms: current perspectives. Int. J. Med. Mushrooms. 1: 31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
  5. Lee, S. Y., Koo, J. M., Yoo, H. S., Kim, Y. H., Kim, J. W., Lee, J. H., Hong, H. J, Kim, H. I., Park, S. K., Lee, S. W., Chung, W. T., Yoo. Y. H. and Huh, G. Y. (2008) The expression of TRAIL and its receptors in human osteoarthritic cartilages. Int. Medicine. 74: 296-304.
  6. Johnston, S. A. (1997) Joint Anatomy, Physiology, and Pathobiology. Vet. Clin. North Am. Small Anim. Pract. 27: 699-723. https://doi.org/10.1016/S0195-5616(97)50076-3
  7. Xia, B., Di, C., Zhang, J., Hu, S., Jin, H. and Tong, P. (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms Calcif. Tissue Int. 95: 495-505. https://doi.org/10.1007/s00223-014-9917-9
  8. Goldring, S. R. (2003) Inflammatory mediators as essential elements in bone remodeling. Calcif. Tissue Int. 73: 97-100. https://doi.org/10.1007/s00223-002-1049-y
  9. Wu, W., Wan, X., Shah, F., Fahad, S. and Huang, J. (2014) The role of antioxidant enzymes in adaptive responses to sheath blight infestation under different fertilization rates and hill densities. Sci. World J. 2014: 502134.
  10. Combe, R., Bramwell, S. and Field, M. J. (2004) The monosodium iodoacetate model of osteoarthritis: a model of chronic nociceptive pain in rats. Neurosci. Lett. 370: 236-240. https://doi.org/10.1016/j.neulet.2004.08.023
  11. Guzman, R. E., Evans, M. G., Bove, S., Morenko, B. and Kilgore, K. (2003) Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol. Pathol. 31: 619-624. https://doi.org/10.1080/01926230390241800
  12. Yoon, C. H. (2012) Osteoarthritis Update. Korean J. Intern. Med. 82: 170-174. https://doi.org/10.3904/kjm.2012.82.2.170
  13. Yang, D. H., Woo, C. H., Kim, J. M. and An, H. D. (2015) Effects of Danggwisayeok-tang (Dangguisinitang) on MIAinduced osteoarthritis rats. J. Korean Med. Rehabi. 25: 33-37.
  14. Henrotin, Y., Kurz, B. and Aigner, T. (2005) Oxygen and reactive oxygen species in cartilage degradation: friends or foes. Osteoarthritis Cartilage 13: 643-654. https://doi.org/10.1016/j.joca.2005.04.002
  15. Kurz, B., Lemke, A. and Kehn, M. (2004) Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum. 50: 123-130. https://doi.org/10.1002/art.11438
  16. Babior, B. M. (2004) NADPH oxidase. Curr. Opin. Immunol. 16: 42-47. https://doi.org/10.1016/j.coi.2003.12.001
  17. Radermacher, K. A., Wingler, K., Kleikers, P., Altenhofer, S., Hermans, J. J., Kleinschnitz, C. and Hhw, S. H. (2012) The 1027th target candidate in stroke: Will NADPH oxidase hold up. Exp. Transl. Stroke Med. 4: 1-11. https://doi.org/10.1186/2040-7378-4-1
  18. Takac, I., Schroder, K. and Zhang, L. (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase NOX4. J. Biol. Chem. 286: 13304-13313. https://doi.org/10.1074/jbc.M110.192138
  19. Filippin, L. I., Vercelino, R., Marroni, N. P. and Xavier, R. M. (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Am. J. Clin. Exp. Immunol. 152: 415-422. https://doi.org/10.1111/j.1365-2249.2008.03634.x
  20. Hitchonand, C. A. and El-Gabalawy, H. S. (2004) Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6: 265-278. https://doi.org/10.1186/ar1447
  21. Biemond, P., Swaak, A. J. and Koster, J. F. (1984) Protective factors against oxygen free radicals and hydrogen peroxide in rheumatoid arthritis synovial fluid. Arthritis Rheum. 27: 760-765. https://doi.org/10.1002/art.1780270706
  22. Park, S. H., Lee, H. J., Ryu, J. H., Lee. S. Y., Shin, H. D., Hong, J. H., Seok, J. H. and Lee, C. J. (2014) Effects of Silibinin and Resveratrol on Degradation of I B and Translocation of NF-${\kappa}B$ p65 Induced by Tumor Necrosis Factor-${\alpha}$ in Cultured Airway Epithelial Cells. J. Pharm. 58: 1-6.
  23. Asagiri, M. and Takayanagi, H. (2007) The molecular understanding of osteoclast differentiation. Bone. 40: 251-264. https://doi.org/10.1016/j.bone.2006.09.023
  24. Nelson, A. R., Fingleton, B., Rothenberg, M. L. and Matrisian, L. M. (2000) Matrix metalloproteinases: biolobic activity ans clinical implication. J. Clin. Oncol. 18: 1135-1149. https://doi.org/10.1200/JCO.2000.18.5.1135
  25. Zeng, Z. S., Cohen, A. M. and Guillem, J. G. (1999) Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis. 20: 749-755. https://doi.org/10.1093/carcin/20.5.749
  26. Nagasa, H. and Woessner, J. F. (1999) Matrix metalloproteinases. J. Biol. Chem. 274: 21491-21494. https://doi.org/10.1074/jbc.274.31.21491