DOI QR코드

DOI QR Code

Development of low cost module for proliferation control of cancer cells using LED and its therapeutic effects

LED를 활용한 저가의 암세포 증식제어 모듈 개발 및 효과

  • Cho, Kyoungrae (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Choe, Se-woon (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology)
  • Received : 2018.05.15
  • Accepted : 2018.07.27
  • Published : 2018.09.30

Abstract

Photodynamic therapy has been suggested as an alternative treatment to current cancer therapy which resulting in a variety of side effects because photodynamic therapy targets specific cancer cells and does not have a significant effect on normal cells. Typically, laser was used as a photodynamic therapy, but this was limited due to high cost and heat reaction. However, compact light emitting diodes that can emit light of various wavelengths have been developed at a low cost, which has a great influence on the low cost development of photodynamic therapy equipment. On the other hand, in the study of photodynamic therapy, the data on the direct effect of visible light are relatively small. Therefore, in this paper, we propose a novel cancer therapeutic module by developing a cancer cell proliferation inhibition module based on an Arduino that is relatively inexpensive, and able to use light of various wavelengths.

광 역학 치료법은 그 효과가 특정 위치의 암세포에 국한되어있어 주변의 정상 세포에 큰 영향을 미치지 않기 때문에 다양한 부작용이 존재하는 현재의 암 치료법의 대안으로 제안되어 왔다. 이러한 광 역학 치료에는 광감응제를 선택적으로 자극시키기 위해 레이저를 이용하고 있으나, 고가의 치료비용과 높은 발열현상으로 사용에 제한적이다. 그러나 다양한 파장의 빛을 발할 수 있는 소형 발광 다이오드가 저가로 개발됨에 따라 대체가 가능하며, 이는 광 역학 치료 장비의 소형화 및 저가의 치료 장비 개발에 큰 영향을 미치고 있다. 현재 활발하게 연구되는 광 역학 치료법은 다양한 광감응제를 이용하여 암세포의 사멸을 유도하는데 목적이 있으나, 특정한 파장을 중심으로 진행된 연구는 상대적으로 미비한 실정이다. 따라서 본 논문에서는 저렴하며, 발열현상이 작고, 다양한 파장대의 광원지원이 가능한 발광 다이오드를 사용하고 이를 아두이노로 제어하여 새로운 저가의 암세포 증식 억제 모듈을 개발함으로써, 그 효과를 정량적으로 분석하고 새로운 항암치료법을 제시하고자 한다.

Keywords

References

  1. S. S. Lucky, K. C. Soo, Y. Zhang, "Nanoparticles in Photodynamic Therapy", Chemical Reviews, vol. 115, no. 4, pp. 1990-2042, Jan. 2015 https://doi.org/10.1021/cr5004198
  2. K. Liu, R. Xing, Q. Zou, G. Ma, H. Monhwald, X. Yan, "Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy", Angewandte Chemie, vol. 55, no. 9, pp. 3036-3039, Feb. 2016 https://doi.org/10.1002/anie.201509810
  3. C. Zhang, K. Zha, W. Bu, D. Ni, Y. Liu, J. Feng, J. Shi, "Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence", Angewandte Chemie, vol. 54, no. 6, pp. 1770-1774, Feb. 2016
  4. S. Choe, "Application and therapeutic effects of sickle red blood cells for targeted cancer therapy", Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 12, pp. 2395-2400, Dec. 2016 https://doi.org/10.6109/jkiice.2016.20.12.2395
  5. S. Choe, K. Park, C. Park, J. Ryu, H. Choi, "Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell", Computer Assisted Surgery, vol. 22, Sep. 2017
  6. F. Christopher Holsinger, R. L. Ferris "Transoral Endoscopic Head and Neck Surgery and Its Role Within the Multidisciplinary Treatment Paradigm of Oropharynx Cancer: Robotics, Lasers, and Clinical Trials.", Journal of Clinical Oncology, vol. 33, no. 29, pp. 3285-3292, Oct. 2015 https://doi.org/10.1200/JCO.2015.62.3157
  7. L. Brancaleon, H. Moseley, "Laser and Non-laser Light Sources for Photodynamic Therapy", Lasers in Medical Science, vol. 17, no. 3, pp. 173-186, Aug. 2002 https://doi.org/10.1007/s101030200027
  8. S. Nakamura, T. Mukai, M. Senoh, "Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes.", Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, Apr. 1994 https://doi.org/10.1063/1.111832
  9. J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, X. Meng, P. Wang, C. Lee, W. Zhang, X. Han, "A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation", Nature Communications, vol. 5, pp. 4596, Aug. 2014 https://doi.org/10.1038/ncomms5596
  10. S. S. Lucky, N. M. Idris, Z. Li., K. Huang, K. Soo, Y. Zhang, "Titania Coated Upconversion Nanoparticles for Near-Infrared Light Triggered Photodynamic Therapy", ACS Nano, vol. 9, no.1, pp. 191-205, Jan. 2015 https://doi.org/10.1021/nn503450t
  11. Q. Dou, C. Teng, E. Ye, X. Loh, "Effective near-infrared photodynamic therapy assisted by upconversion nanoparticles conjugated with photosensitizers" International Journal of Nanomedicine, vol. 10, pp. 419-432, Jan. 2015 https://doi.org/10.2217/nnm.14.111
  12. S. Ebbinghaus, A. Dhar, J. McDonald, M. Gruebele, "Protein folding stability and dynamics imaged in a living cell" Nature Methods, vol. 7, pp. 319-323, Feb. 2010 https://doi.org/10.1038/nmeth.1435