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Abstract

Adversarial attacks on artificial intelligence (AI) systems use adversarial examples to achieve the attack objective. Adversarial

examples consist of slightly changed test data, causing AI systems to make false decisions on these examples. When used as a

tool for attacking AI systems, this can lead to disastrous results. In this paper, we propose an ensemble of degraded

convolutional neural network (CNN) modules, which is more robust to adversarial attacks than conventional CNNs. Each

module is trained on degraded images. During testing, images are degraded using various degradation methods, and a final

decision is made utilizing a one-hot encoding vector that is obtained by summing up all the output vectors of the modules.

Experimental results show that the proposed ensemble network is more resilient to adversarial attacks than conventional

networks, while the accuracies for normal images are similar.

Index Terms: Adversarial attack, Artificial Intelligence, Image classification

I. INTRODUCTION

With the recent advance in deep learning methods, artifi-

cial intelligence (AI) systems have become widely used in

various fields, such as autonomous driving, banking, and

smart homes, to name a few. However, as AI systems are

becoming increasingly prevailing, the cost associated with

their failure or improper operation is also increasing.

Recently, it has been shown that AI systems can fail to

correctly recognize objects in even slightly degraded images

[1]. Such images—with the level of degradation that is not

captured by the human eye but is sufficient to induce the AI

systems’ failure—are called adversarial examples. Problems

arise when such adversarial examples are intentionally used

for misleading AI systems in adversarial attacks.

In a typical adversarial attack, the attacker first generates

an adversarial example to the attacked AI system. If the model

and its parameters are known to the attacker, it becomes easy

to generate adversarial examples. For example, in [1], it was

shown that a simple calculation of the gradient of the loss

function with respect to the input can be used for generating

efficient adversarial examples. Such attacks, which use gra-

dient information about the attacked network, are called gra-

dient-based adversary attacks. In [2], an L2 attack on the

logit value of the neural network was proposed, instead of a

direct attack that alters the network’s output. This attack is

known as one of the strongest adversarial attack methods. In

[3], an algorithm for generating adversarial examples was

proposed, based on the adversarial saliency map. The study

in [4] concluded that adversarial examples may not be criti-

cally dangerous for automatic driving applications since

adversarial examples are only effective from a specific point

of view. However, in [5], it was shown that adversarial exam-

ples can indeed pose a threat to automatic driving applica-

tions, because adversarial examples stable with respect to

affine transformations could be generated.
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When the parameters of the attacked neural network are

unknown, the gradient cannot be directly computed. How-

ever, as has been shown in [6], even in such black-box cases,

it is possible to generate adversarial examples using differen-

tial evolution or model extraction methods. Furthermore, in

[6] it was also shown that a single pixel attack is sufficient

for deceiving an AI system. The authors in [7] introduced a

measure of the robustness of an AI system by suggesting

how to measure the minimal length of a vector that causes

the attacked AI system to make false decisions. At the same

time, the authors in [8] and [9] suggested methods for detecting

adversarial attacks before they affect the attacked AI systems.

However, to the best of our knowledge, no AI system has

been designed that would be resilient to all possible adver-

sarial attacks, although it is hoped that CapsuleNets [10] can

deal with the problem to a certain extent. The inability to

come up with an all-encompassing AI system has been

attributed to the fact that there exist infinitely many adversar-

ial examples and adversarial example-generating algorithms. 

Here, we claim that the vulnerability of AI systems to

adversarial examples may stem from the fact that AI systems

are sensitive to small details in the test data. Therefore, we

propose a degraded AI system, which is trained on degraded

training data and works on degraded test data. However, by

working with degraded data, the accuracy of the AI system

is likely to decrease. Therefore, we use an ensemble of

degraded AI modules for which the final decision is made

based on the vote across all degraded AI modules.

A similar approach using an ensemble of several modules

for defending against adversarial attacks has been proposed

in [11]. The main difference between the work in [11] and

our work is that in [11] the authors perturbed the data to a

more significant extent by adding noise to each module,

while we degraded our data by eliminating high-frequency

components from our images. We explain the difference

between the two models in more detail in Section III. 

Experimental results show that the proposed system is

more robust to adversarial examples while the accuracy is

similar to that of a normal AI system.

II. ADVERSARIAL ATTACKS ON NEURAL NET-

WORKS

Fig. 1 illustrates the difference between a hacking attack

and an adversarial attack. In hacking, an attacker tries to

attack an AI system via an abnormal route which the

attacker has explored, whereas in an adversarial attack, an

adversarial example is shown to the AI system via a normal

route, i.e., through the sensors of the AI system.

Fig. 2 shows an adversarial example adopted from [1],

where the left image is a normal image while the right image

is an adversarial example obtained by adding a small amount

of designed noise to the left image. Even though the left and

right images look the same to the human eye, the neural net-

work assigns a confidence of 57.7% for the left image to be

a panda, while it assigns a confidence of 99.3% for the right

image to be a gibbon.

The small amount of noise was not random noise, but was

designed carefully to deceive the neural network as desired.

For example, the adversarial example in Fig. 2 was gener-

ated by just taking the sign of the gradient vector, which pro-

vides information about the direction in which the error

increases, and multiplying this vector by a small number:

, (1)

where  is the generated adversarial example, x is the origi-

nal image, and  denotes the gradient of the cost func-

tion with respect to the input image x.

As can be seen from (1), the gradient information is the

most important information for generating a successful

adversarial example. This is also true for other adversarial

example-generating algorithms, although some methods do

not use the gradient information, for example the method

proposed in [6].

III. PROPOSED ENSEMBLE SYSTEM ROBUST 

TO ADVERSARIAL ATTACKS

Neural networks may be vulnerable to adversarial exam-
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Fig. 1. Comparison between hacking and adversarial attack.

Fig. 2. Example of an adversarial example. Adapted from Goodfellow et al.,

Explaining and harnessing adversarial examples, 2014 [1] with permission.
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ples because these networks are trained to consider even fine

details in the presented images. Therefore, to increase the

network’s resilience to adversarial examples, one defense

method amounts to degrading the training set images and

train the network on degraded images. However, by doing

so, the performance of the network is likely to decrease. Fur-

thermore, if the presented training set images are degraded

using only one method, some adversarial example-generating

algorithms can still be very effective on this network. There-

fore, in this paper we propose an ensemble of convolutional

neural network (CNN) models, where each model is trained

on degraded images using different methods. We are aware

of a similar approach, which uses images with different

amounts of noise to reduce the gradient effect in adversarial

examples [11]. Adding of extra noise to the network is the

same as adding high-frequency components to images. The

main idea in [11] is that if the adversarial gradient is hidden

in noise (using many high-frequency components), the

attacked network will not be able to discriminate the adver-

sarial gradient from pure noise; therefore, the network will

be more robust to the adversarial gradient. For comparison,

we considered several image degradation transformations,

such as several types of resizing and blurring, as well as

image de-colorization. This degrading was the same as sub-

tracting high-frequency components from the presented

images, which to some extent also subtracts the adversarial

gradient.

By doing so, the network was trained to perceive objects

by not considering too strongly the image’s high-frequency

components (as is the case in conventional CNNs).

Each of these degrading transformations made images

more resistant to adversarial examples. However, because

the accuracy of individual degraded models is relatively low,

we make a decision based on adding all of the resulting out-

put vectors of all the models. 

Fig. 3 shows the overall diagram of the proposed system.

The different CNN models are trained on different degraded

images. Then, in test time, a test image is shown to all of the

component CNN models, and a decision is made based on

the votes of the component CNNs.

Here, we mainly use degradation of spatial information, as

it has been shown that an ensemble of feature-squeezing net-

works is not quite efficient [12]. The key components of the

model are explained below

A. Degradation of Color Information

For every CNN model, we discard the color information.

In other words, we calculate the luminance values for the

RGB channels, and then copy the luminance values into the

RGB channels. This discards the gradient across the chan-

nels. The effect is small, because the spatial information of

the gradient is kept intact, but such de-colorization also sim-

plifies the degradation of spatial information.

B. Degradation of Spatial Information

We use two different methods for the degradation of spa-

tial information. In the first approach, the image is filtered

using a Gaussian kernel:

(2),

where  denotes the convolved image, x denotes the origi-

nal image, * denotes the convolution operator, and μ and σ

denote the mean and the standard deviation of the training

images, respectively. 

As is known from the scale-space theory, such filtering

using a Gaussian kernel smooths out the fine-scale details in

the images, and eliminates adversarial gradients.

The second method amounts to resizing the image several

times. We assume that the adversarial gradient vector has

mainly high-frequency components, as shown in the shaded

part in Fig. 4(a). The down-sampling process widens the fre-

quency spectrum of the input vector and the adversarial gra-

dient vector, so that aliasing occurs in the high-frequency

part (Fig. 4(b)). This mixes the frequency components of the

adversarial gradient vector, which weakens the adversarial

attacking effect. Moreover, when a low-pass filter is applied

to the down-sampled image, before up-sampling, the high-

frequency components are eliminated as shown in Fig. 4(c),

and most of the adversarial gradient vector is eliminated

from the input vector. However, as the high-frequency com-

ponents of the original image are also lost, the recognition

accuracy decreases, and should be compensated for by the

ensemble decision summing.

C. Decision Summing

After the degraded CNN models output their prediction vec-

tors, we add up the prediction vectors to yield the ensemble
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Fig. 3. Schematic of the proposed model.
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decision of these degraded models. The final ensemble vector

is then compared with the true label one-hot encoding vector:

 (3),

where  denotes the output vector of the k-th degradation

model. As will be shown when we describe our experimental

results below, the output vectors of the degradation models

do not yield higher accuracy on the test data. This is owing

to the fact that, although the adversarial gradient information

has been eliminated, high-frequency components have been

also removed from the signal, which diminishes the net-

work’s precision. However, the ensemble vector accumulates

the prediction values of all the degraded output vectors,

which strengthens the correctly predicted value, while false

predictions owing to the adversarial gradient are averaged

out, because different models were trained by different meth-

ods (and thus give different false predictions). We further

demonstrate this point in what follows.

IV. EXPERIMENTAL RESULTS

We used the CIFAR-10 dataset to test the effect of an

adversarial attack generated by the fast gradient sign method

(FGSM). In the CIFAR-10 dataset, the data are divided into

two sets; 50000 data samples are used for training and 10000

data samples are used for testing. The images’ size in these

experiments was 32 × 32, and the number of classes was 10.

We used four different degraded modules. The first module

down-sampled the adversarial images to the size of 8 × 8,

and then up-sampled them back to 32 × 32. The second and

the third modules resized the adversarial images into sizes of

16 × 8 and 8 × 16, respectively, and then up-sampled them to

the normal size. These different resizing transformations dis-

torting the adversarial examples with different geometries; as

a result, the low-pass filter eliminated different high-frequency

components in each module. The last module modified the

adversarial images into grayscale and convolved them with a

Gaussian kernel, where we used a kernel with a standard

deviation of 0.1. Table 1 shows the accuracy achieved by

each module, and also the accuracy achieved without using

any defense method.

As can be seen, individual degrading processes do not

improve the system’s accuracy with respect to adversarial

examples, but achieve lower accuracy when no degrading

methods are used. We believe that this is true because the

degrading process eliminates not only the adversarial gradi-

ent but also the important frequency components from the

image, which makes the prediction somewhat inaccurate.
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Table 1. Experimental result for 4 modules

Accuracy (%) for adversarial example

Epoch = 10 Epoch = 20

Without degradation 62.12 63.33

Module 1 55.25 55.58

Module 2 58.40 56.93

Module 3 59.43 57.61

Module 4 55.67 57.43

Ensemble accuracy 67.18 71.02

Fig. 4. Analysis of the elimination of the gradient vector in the adversarial example in the Fourier domain. (a) Spectral response to the adversarial example,

where the shaded parts show the region in which most of the spectral components of the adversarial gradient reside. (b) Spectral domain after down-sampling of

the adversarial example. (c) Spectral domain after low-pass filtering and up-sampling of the adversarial example.
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However, the adversarial gradient is also degraded to some

extent. Therefore, if we take the ensemble result for all the

output vectors, the effect of the adversarial gradient is

reduced while the accuracy increases as the prediction value

for the true label increases, as can be seen from Table 1.

Compared with the original CNN, the accuracy has increased

by 5%-10%.

V. CONCLUSION

In this paper, we proposed an ensemble network that can

resist adversarial attacks and can yield high-accuracy perfor-

mance even in the presence of such attacks. The degradation

transformations distorted the adversarial gradient, which in

turn eliminated the effect of the adversarial attack, while

using the ensemble increased the system’s prediction accu-

racy by accumulating the value associated with the correct

prediction. In future work, we will extend the ensemble sys-

tem by including more diverse degrading modules, and will

further test the system on a diverse set of adversarial attacks

using adversarial examples generated by different methods.
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