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Abstract

Accurate classification of cloud images is a challenging task. Almost all the existing methods rely on hand-crafted feature

extraction. Their limitation is low discriminative power. In the recent years, deep learning with convolution neural networks

(CNNs), which can auto extract features, has achieved promising results in many computer vision and image understanding

fields. However, deep learning approaches usually need large datasets. This paper proposes a deep learning approach for

classification of cloud image patches on small datasets. First, we design a suitable deep learning model for small datasets using a

CNN, and then we apply data augmentation and dropout regularization techniques to increase the generalization of the model.

The experiments for the proposed approach were performed on SWIMCAT small dataset with k-fold cross-validation. The

experimental results demonstrated perfect classification accuracy for most classes on every fold, and confirmed both the high

accuracy and the robustness of the proposed model.

Index Terms: Cloud classification, CNN, Data augmentation, SWIMCAT dataset

I. INTRODUCTION

Research on the cloud and its characteristics plays a very

important role for many applications: e.g., climate modeling,

weather prediction, meteorology study, solar energy produc-

tion and satellite communication [1-6]. Cloud classification

is an essential role in cloud observation. However, at pres-

ent, existing cloud classification is done by professionally

trained observers. This method is highly time consuming,

and depends on the experience of observers; moreover, there

are some problems that cannot be well handled by the human

observers [7]. Therefore, automatic classification of the

cloud is a much-needed task.

Much research on classification of cloud images has been

conducted. Buch and Sun [8] applied binary decision trees to

classify pixels in the whole sky imager (WSI) images into

five cloud types. Singh and Glennen [9] proposed five differ-

ent feature extraction methods (autocorrection, co-occur-

rence matrices, edge frequency, Law’s features and primitive

length) and used the k-nearest neighbor and neural network

for cloud classification. Calbo and Sabburg [10] applied a

Fourier transform for cloud-type recognition. Heinle et al.

[11] predefined several statistical features to describe color

and texture and used a k-nearest neighbor classifier. Liu et

al. [12] used an illumination-invariant completed local ter-

nary pattern descriptor for cloud classification. Liu et al. [13]

extracted some cloud structure features and used a simple

classifier called the rectangle method for classification of

infrared cloud images. Liu et al. [14] proposed a salient local

binary pattern for cloud classification. Liu et al. [15] used a

weighted local binary descriptor. Dev et al. [16] proposed a

modified texton-based approach to categorize cloud image

patches. Luo et al. [17] combined manifold features and text

features and then used a support vector machine (SVM) to
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classify cloud images. Gan et al. [18] proposed cloud type

classification using duplex norm-bounded sparse coding.

Nevertheless, most of these approaches are based on hand-

crafted features so each method needs to find its empirical

parameters.

Recently, development of deep learning is increasing rap-

idly; in particular, convolutional neural networks (CNNs)

have shown outstanding performance in image classification

[19]. CNNs are able to “learn” features from the image data,

so there is no need any feature extraction method. Some

recent studies used CNNs for cloud classification. Shi et al.

[20] proposed a CNN model to extract features and used

SVM to classify cloud images. Ye et al. [21, 22] improved

feature extraction by using both CNN and Fisher vector and

used SVM to classify cloud images. Zhang et al. [23] pro-

posed transferring deep visual information. Generally, these

deep learning approaches achieved promising results; how-

ever, all the above deep learning approaches only utilized the

CNN to extract features. They needed other methods for

classification, and, they used pre-trained CNN models to

extract features. However, for small datasets, the lack of suf-

ficient image samples makes it difficult to converge in the

end-to-end learning manner.

This paper proposes a deep learning approach for classifi-

cation of cloud images on small datasets. First, we design a

deep learning model that includes both the feature extraction

part and classification part using CNN, and then we apply

two regularization techniques, data augmentation and drop-

out, to generalize our model. Our experiment is performed

on the SWIMCAT dataset.

II. SWIMCAT DATASET

The Singapore Whole-sky IMaging CATegories (SWIM-

CAT) dataset was introduced by Dev et al. [16] and the

images were captured during 17 months from January 2013

to May 2014 in Singapore using the Wide Angle High-Reso-

lution Sky Imaging System (WAHRSIS), a calibrated ground-

based whole-sky imager [24]. The dataset has five distinct

categories. The five categories (clear sky, patterned clouds,

thick dark clouds, thick white clouds, and veil clouds) are

defined on the basic of visual characteristics of sky/cloud

conditions and consultation with experts from the Singapore

Meteorological Services.

The SWIMCAT dataset has 784 images of sky/cloud

patches: clear sky, 224 images; patterned cloud, 89 images;

thick dark cloud, 251 images; thick white cloud, 135 images;

and veil cloud, 85 images. The dimensions of all the images

are 125 × 125 pixels. Some random images of each class

from the SWIMCAT dataset are shown in columns in Fig. 1.

III. METHODS

A. Convolutional Neural Networks

CNNs were inspired by the human visual system [25, 26].

They are the state-of-the-art approaches not only for pattern

recognition tasks but also for object detection tasks, espe-

cially with the development of computing capacity. Krizhevsky

et al. [19] won the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) 2012 competition [27, 28] with bril-

liant deep CNNs that show the great power of deep CNNs.

Unlike many other pattern recognition algorithms, CNNs

combine both feature extraction and classification. A sche-

matic representation of a basic CNN (inspired by [29]) is

shown in Fig. 2. The given network consists of five different

layers: input, convolution, pooling, fully-connected, and out-

put. The input layer specifies a fixed size for the input

images, i.e., images may have to be resized accordingly. The

image is then convolved with multiple learned kernels using

shared weights. Next, the pooling layers reduce the size of

the image while trying to maintain the contained informa-

tion. These two layers comprise the feature extraction part.

Afterwards, the extracted features are weighted and com-

bined in the fully-connected layers. This represents the clas-

Fig. 1. Sample images of each class from the SWIMCAT dataset. Fig. 2. Block diagram of a CNN. 
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sification part of the CNN. Finally, there is one output

neuron for each object category in the output layer.

B. Model Design

As we mentioned above, the architecture of CNNs follow

this pattern:

(1)

where IN is the input layer, CONV is the convolution layer,

POOL is the pooling layer, FC is the fully connected layer,

and OUT is the output layer. However, for “deep learning”

these layers are stacked together in a particular pattern that

yields a CNN model. Basically, the most common form of

CNN architecture is that many layers of CONV and POOL

are repeated until the volume, width and height is small, at

which point we apply some FC layers. The most common

CNN architectures have the following pattern [30]:

(2)

where “*” indicates repetition and “?” indicates an optional

pooling layer. For simplicity, we do not mention activation,

but by default, the activation always follows CONV layers

and FC layers. Theoretically, the larger number of convolu-

tional layers (M is large) extracts more detailed features of

input images; however, it needs a large amount of learning

data. In this study, we selected less number of convolutional

layers (M is small) and increased the generalization of our

model by applying regularization techniques.

We selected M = 3 and N = 2, and the feature extraction

part consists of three groups of a CONV layer and a POOL

layer. The classification part consists of two fully connected

layers.

C. Model Regularization

In this research, we used the SWIMCAT dataset which

consists of only 784 image patches, which is a very small

number for deep learning and makes it very easy to get over-

fitting. To overcome this problem we used two regularization

methods. The first augments data passed into the network for

training, and the second modifies the network architecture.

They are data augmentation and dropout, respectively.

1) Data Augmentation

Data augmentation is a method that is used to generate

new training samples from the original data samples by aug-

menting the samples via a number of random transforma-

tions such that the class labels are not changed. The purpose

of data augmentation is to increase the generalizability of the

model. With that, the robustness is improved and overfitting

is prevented.

In this study we did the data augmentation by applying

random geometric transforms. The detailed configuration

parameters of each augmentation method are shown in Table

1. We applied random rotation with range of 40°. We also

applied random translation both vertically and horizontally

with a range of 20%. Random shear transformation and ran-

dom zoom are applied with the range of 20%. Finally, a hor-

izontal flip and vertical flip were also performed randomly.

By so doing, during the training time, our model will never

see the exact same image twice. We only applied data aug-

mentation at training time and did not apply data augmenta-

tion at the testing time and evaluation time of our trained

networks.

As mentioned above, by applying data augmentation, the

network will never see the same input twice, but the inputs it

sees are still heavily intercorrelated because they come from

a small number of original images. The process cannot pro-

duce new information; it can only remix existing information

so only data augmentation is not enough to completely get

rid of overfitting. We applied one more regularization tech-

nique, dropout.

2) Dropout

Dropout was proposed by Srivastava et al. [31]; it ran-

domly drops units with probability p from the neural net-

work during training. Fig. 3 visualizes the dropout concept

with dropout probability p = 0.5, the top parts are fully-con-

nected layers without dropout, and the bottom parts are

fully-connected layers with 50% of the connections dropped.

In this study, we used dropout for both the extraction part

and the classification part. In the extraction part, we applied

dropout between the second and third convolution groups

with probability p = 0.25. In the classification part, we

applied dropout p = 0.5 between FC layers.

The detailed architecture of our implemented CNN model

in which we included dropout layers and activation layers is

shown in Table 2. We used 32 filters for the first and second

convolutional layers and 16 filters for the third convolutional

layer. Except that the activation of the output layer is soft-

max, all the other activations are ReLU. We apply 3 × 3 ker-

OUTFCPOOLCONVIN ⇒⇒⇒⇒

OUTNFCMPOOLCONVIN ⇒⇒⇒⇒ *][*?][

Table 1. Augmentation parameters

No. Parameter Augmentation

1 Rotation (o) 40

2 Width shift (%) 20

3 Height shift (%) 20

4 Shear (%) 20

5 Zoom (%) 20

6 Horizontal flip Yes

7 Vertical flip Yes
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nel sizes for CONV layers and 2 × 2 window sizes for the

POOL layers.

IV. EXPERIMENT

A. K-Fold Cross-Validation

The gold standard for machine learning model evaluation

is k-fold cross-validation. In this study we randomly split our

data into 5 partitions (k = 5) of equal size. For each partition

i, we trained our model on the remaining four partitions, and

tested it on partition i. The final score was the averages of

all 5 scores obtained. The schematic of our 5-fold cross-vali-

dation is shown in Fig. 4.

B. Experimental Environment

The hardware we used to implement the proposed network

was a single PC Intel Core i5-7500 with the graphics proces-

sor NVIDIA GeForce GTX 1060 with 4 GB memory

equipped. The software was developed using Python pro-

gramming language based on Keras deep learning library

[32] with back-end as TensorFlow [33].

C. Experimental Results

We experimented on our approach as described in Section

III on SWIMCAT database. We used batch size of 32 images,

and RMSProp optimizer. The experimental result of five test

sets after running 1,000 epochs for each fold, are shown in

Table 3. We obtained an average accuracy of 0.986 with

minimum and maximum accuracies at 0.975 and 0.994,

respectively.

The confusion matrixes are shown in Fig. 5. In each con-

fusion matrix, each column of the matrix represents the

instances in a predicted class, and each row represents the

instances in the actual class. Our proposed approach

achieves perfect classification accuracy for most classes. The

Fig. 3. Drop out concept visualization: (top) no dropout and (bottom)

dropout 50% of the connections.

Table 2. Architecture of our implemented convolutional network

No. Layer Output size Filter/stride size Dropout

1 Input 125×125×3 - -

2 Convolution 123×123×32 3×3 -

3 ReLU 123×123×32 - -

4 Max Pooling 61×61×32 2×2 -

5 Convolution 59×59×32 3×3 -

6 ReLU 59×59×32 - -

7 Max Pooling 29×29×32 2×2 -

8 Dropout 29×29×32 - 0.25

9 Convolution 27×27×16 3×3 -

10 ReLU 27×27×16 - -

11 Max pooling 13×13×16 2×2 -

12 Flatten 1×1×2704 - -

13 Dropout 1×1×2704 - 0.5

14 Fully connected 1×1×32 - -

15 ReLU 1×1×32 - -

16 Fully connected 1×1×5 - -

17 Softmax 1×1×5 - -

Fig. 4. Schematic of 5-fold cross-validation.

Table 3. Experimental results

No. Fold Accuracy (%)

1 Fold 1 98.73

2 Fold 2 99.36

3 Fold 3 99.36

4 Fold 4 97.45

5 Fold 5 98.06

6 Average 98.59
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sky, patterned clouds and thick dark cloud classes always

achieve 100% accuracy for all 5 folds.

V. CONCLUSION

This paper presented a deep learning solution for classifi-

cation of cloud image patches on small datasets. For this

research we used the dataset SWIMCAT, which consist of

only 784 images. That is very small for deep learning appli-

cations, and it is very easy to get overfitting. To solve this

problem, we designed a CNN model with enough convolu-

tional layers for small datasets, and we applied two regular-

ization methods, data augmentation and dropout to thoroughly

treat the overfitting problem. In addition, the gold standard

for the machine learning model, the k-fold cross-validation

was also applied. Experimental results confirmed that we

achieved perfect classification accuracy for all classes and

all folds, with a minimum accuracy of 97.45% and maxi-

mum accuracies of 99.36%. These results prove that the pro-

posed model not only achieves high accuracy but is also

robust.
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