DOI QR코드

DOI QR Code

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position

필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석

  • Park, Jee Min (Department of Mechanical Engineering, Chung-Ang University) ;
  • Moon, Joo Hyun (Department of Mechanical Engineering, Chung-Ang University) ;
  • Lee, Hyung Ju (Department of Mechanical Engineering, Chung-Ang University) ;
  • Lee, Seong Hyuk (Department of Mechanical Engineering, Chung-Ang University)
  • Received : 2018.05.28
  • Accepted : 2018.09.07
  • Published : 2018.09.30

Abstract

The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.

본 연구에서는 가스터빈 블레이드의 필름 냉각에서 45도 리브가 있는 냉각채널의 필름 홀 위치가 블레이드의 표면냉각 성능에 미치는 영향을 전산유체해석 기법을 통하여 분석하였다. 또한 냉각채널의 리브 유무의 영향을 동일 분사율에 대해서 고찰하였다. 수치해석 도메인은 3차원으로 구성하였고 상용코드(Fluent ver. 17.0)를 사용하여 정상상태 조건 하에서 수치해석을 진행하였다. 그 결과를 바탕으로 블레이드 표면에서의 냉각효율, 유속, 유선, 압력 계수를 비교 분석하였고 홀 위치의 변화가 리브 구조에 의해 유발되는 이차 유동의 토출에 미치는 영향을 고찰하였다. 수치해석 결과로부터 리브가 설치되어 있는 경우 냉각채널의 내부유동은 상부에서 반시계 방향 및 하부에서 시계 방향의 와류쌍을 형성하는 것을 확인할 수 있었다. 리브가 있는 채널의 경우 리브에 의하여 발생한 와류유동이 홀 출구 부근에서 더 높은 압력 차이를 유발하여 리브가 없는 경우보다 최소 12% 이상의 높은 냉각 효율을 나타냈다. 또한 리브가 있는 채널 중에서 홀이 좌측에 위치한 경우(Rib-Left) 리브에 의하여 발생한 이차 유동이 홀 부근의 벽면에 부딪혀 홀 경사각 방향으로의 유동이 형성되는 것을 확인하였다. 블레이드 표면으로 토출된 냉각기체가 주 유동 경계층 내부에서 머무는 영역이 다른 케이스에 비하여 넓기 때문인 것으로 사료된다. 또한 이 경우 홀 출구 부근에서 가장 큰 압력 계수 차이를 나타내었고 이로 인하여 냉각기체의 토출이 촉진되어 냉각효율이 다소 증가하였다.

Keywords

References

  1. W. Peng, X. Sun, P. Jiang, J. Wang, "Effect of ribbed and smooth coolant cross-flow channel on film cooling", Nuclear Engineering and Design, Vol.316, No.5, pp.186-197, May, 2017. DOI: https://dx.doi.org/10.1016/j.nucengdes.2017.03.015
  2. T. E. Dyson, D. G. Bogard, S. D. Bradshaw, "Evaluation of CFD simulations of film cooling performance on a turbine vane including conjugate heat transfer effects", International Journal of Heat and Fluid Flow, Vol.50, No.12, pp.279-286, December, 2014. DOI: https://dx.doi.org/10.1016/j.ijheatfluidflow.2014.08.010
  3. J. S. Park, J. C. Han, Y. Huang, S. Ou, R. J. Boyle, "Heat Transfer Performance Comparisons of Five Different Rectangular Channels with Parallel Angled Ribs", International Journal of Heat and Mass Transfer, Vol.35, No.11, pp.2891-2903, November, 1992. DOI: https://dx.doi.org/10.1016/0017-9310(92)90309-G
  4. S. W. Ahn, H. K. Kang, S. T. Bae, D. H. Lee, "Heat Transfer and Friction Factor in a Square Channel with One, Two, and Four Ribbed Walls", Journal of Turbomachinery, Vol.130, No.3, pp.1-5, May, 2008. DOI: https://dx.doi.org/10.1115/1.2775488
  5. S. R. Klavetter, J. W. McClintic, D. G. Bogard, J. E. Dees, G. M. Laskowski, R. Briggs, "The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow", Journal of Turbomachinery, Vol.138, No.12, pp.1-10, Jun, 2016. DOI: https://dx.doi.org/10.1115/1.4032928
  6. J. Lee, J. S. Kim, H. Lim., J. S. Bang, J, Seo, J. L. Sohn, J. Lee, "Flow visualization of microscale effusion cooling within mainstream boundary layer on a flat plate", Journal of Mechanical Science and Technology, Vol.31, No.11, pp.5113-5121, November, 2017. DOI: https://dx.doi.org/10.1007/s12206-017-1005-4
  7. B. Lu, W. Peng, P. X. Jiang, J. Wang, Y. P. Wang, "Experimental and numerical study of the effect of conjugate heat transfer on film cooling", Experimental Heat Transfer, Vol.30, No.4, pp.355-368, March, 2017. DOI: https://dx.doi.org/10.1080/08916152.2017.1283374
  8. B. T. An, J. J. Liu, X. D. Zhang, S. J. Zhou, C. Zhang, "Film cooling effectiveness measurements of a near surface streamwise diffusion hole", International Journal of Heat and Mass Transfer, Vol.103, No.12, pp.1-13, 2016. DOI: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.028
  9. W. Yang, X. Shi, J. Zhang, "Experimental investigation on film cooling characteristics of ellipse-shaped tab", Experimental Thermal and Fluid Science, Vol.81, No.2, pp.277-290, February, 2017. DOI: https://dx.doi.org/10.1016/j.expthermflusci.2016.10.018
  10. C. Liu, L. Ye, H. Zhu, J. Luo, "Investigation on the effects of rib orientation angle on the film cooling with ribbed cross-flow coolant channel", International Journal of Heat and Mass Transfer, Vol.115, No.12, pp.379-394, December, 2017. DOI: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.08.063
  11. G. Xie, X. Liu, H. Yan, "Film cooling performance and flow characteristics of internal cooling channels with continuous/truncated ribs", International Journal of Heat and Mass Transfer, Vol.105, No.2, pp.67-75, February, 2017. DOI: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.065
  12. A. M. M. Abdala, F. N. M. Elwekeel, "Pressure distribution effects due to chevron fences on film cooling effectiveness and flow structures", Applied Thermal Engineering, Vol.110, pp.616-629, January, 2017. DOI: https://dx.doi.org/10.1016/j.applthermaleng.2016.08.152