DOI QR코드

DOI QR Code

Analysis on the Lateral Stiffness of Coil Spring for Railway Vehicle

철도차량용 코일스프링 횡강성 해석

  • Hur, Hyun-Moo (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Ahn, Da-Hoon (Advanced Railroad Vehicle Division, Korea Railroad Research Institute)
  • 허현무 (한국철도기술연구원 차세대철도차량본부) ;
  • 안다훈 (한국철도기술연구원 차세대철도차량본부)
  • Received : 2018.08.10
  • Accepted : 2018.09.07
  • Published : 2018.09.30

Abstract

In constructing the multi-body dynamics model to analyze the behavior of the railway vehicle, it is very important to understand the properties of the suspension elements that constitute the suspension system. Among them, coil springs, which are mainly used in primary and secondary suspension systems, clearly show the axial stiffness in the drawings, but the lateral properties of the coil springs are not specified clearly, making it difficult to construct a dynamic analysis model. Therefore, in this paper, the model for analyzing the lateral stiffness of the coil spring is examined. A finite element method was applied to analyze the lateral stiffness of the coil spring and numerical analysis was performed by applying the coil spring lateral stiffness analysis model proposed by Krettek and Sobczak. And the test to analyze the lateral stiffness of coil spring was conducted. As a result of comparing with the test results, it was found that the results obtained by applying the lateral stiffness analysis model of Krettek and Sobczak and correcting the correction coefficient are similar to those of the test results.

철도차량의 거동을 해석하기 위하여 다물체 동역학 모델을 구성함에 있어 현가시스템을 구성하는 스프링, 댐퍼와 같은 현가요소에 대한 스프링강성이나 감쇠계수와 같은 물성치 파악은 매우 중요하다. 그 중 1차, 2차 현가시스템에 주로 활용되고 있는 코일스프링에 대한 동역학 모델을 구성함에 있어 축방향 강성은 도면이나 설계자료에 명확하게 명시되어 있지만 횡방향에 대한 물성은 명시되어 있지 않아 동역학 해석 모델 구성에 어려움을 안고 있다. 따라서 본 논문에서는 철도차량의 현가시스템에 폭 넓게 적용되고 있는 코일스프링에 대한 횡강성을 해석하기 위한 모델에 대하여 검토하고자 한다. 코일스프링 시료에 대한 횡강성을 해석하고자 유한요소해석 방법을 수행하였고 Krettek와 Sobczak의 코일스프링 횡강성 해석모델을 적용하여 수치해석을 수행하였다. 그리고 코일스프링 시료를 대상으로 횡강성 특성시험을 수행하여 해석모델과의 적합성을 검토하였다. 시험결과와 비교한 결과, Krettek와 Sobczak의 코일스프링 횡강성 해석모델을 적용하고 보정계수를 수정한 결과가 시험결과에 근사한 결과를 얻을 수 있었다.

Keywords

References

  1. V. K. Garg, R. V. Dukkipati, "Dynamics of Railway Vehicle Systems", pp.257-261, Academic Press, 1984
  2. C. S. Jeon, S. H. Choi, "A Study on the Vibration Reduction of the Commercial High-speed Train", Journal of the Korean Academia-Industrial cooperation Society, Vol.18, No.11, pp.697-704, 2017
  3. C. S. Jeon, "A study on the Dynamic Behavior Enhancement of the Korean High-speed Train", Journal of the Korean Academia-Industrial cooperation Society, Vol.18, No.10, pp.81-87, 2017. DOI: https://dx.doi.org/10.5762/KAIS.2017.18.10.81
  4. A. D. Kelly, C. E. Knight, "Helrical Coil Suspension Spring in Finite Element Models of Compressors", International Compressor Engineering Conference, pp.779-787, 1992.
  5. S. Bruni, J. Vinolas, M. Berg, O. Polach, S. Stichel, "Modelling of suspension components in a rail vehicle dynamics context", Vehicle System Dynamics, Vol.49, No.7, pp.1021-1072, 2011. DOI: https://dx.doi.org/10.1080/00423114.2011.586430
  6. O. Krettek, M. Sobczak, "Zur Berechnung der Quer und Biegekennung von Schraubenfedern fur Schienenfahrzeuge", ZEV-GlasersAnnalen, Vol.112, No.9, Aachen, pp.321-326, September, 1988.
  7. British Standards Institution, "BS EN 13298-2003 Railway applications - Suspension components - Helical suspension springs, steel", 2003.