DOI QR코드

DOI QR Code

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area

높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구

  • Kim, Jong-Il (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김종일 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2018.06.07
  • Accepted : 2018.09.07
  • Published : 2018.09.30

Abstract

Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

이산화주석은 Rutile 구조를 갖는 Oxygen-Deficient n-type 반도체 물질로서, $H_2$, CO, $CO_2$ 등의 가스 분자가 표면에 흡착되면 전기저항이 변하는 특성을 가지고 있고, 이러한 성질을 활용하면 다양한 가스의 감지가 가능하기 때문에 가스센서로 연구가 활발히 이루어지고 있다. 나노구조물의 경우 Bulk 상태보다 체적 대비 표면적비가 높기 때문에 기체의 흡착이 유리하고, 가스 센서의 성능이 향상될 수 있다. 본 연구에서는 Thermal CVD 공정을 이용하여 SnO Nanoplatelet을 Si 기판위에 Dense하게 성장시켰다. 기상 수송 방법(Vapor Transport Method)으로 성장된 SnO 나노구조물을 Thermal CVD System을 이용하여 산소분위기에서 $830^{\circ}C$$1030^{\circ}C$에서 열처리(Post-Annealing)하여 $SnO_2$ 상(Phase)을 갖도록 하였다. 열처리 과정동안 쳄버의 압력을 4.2 Torr로 일정하게 유지시켰다. 열처리 된 SnO 나노구조물의 결정학적 특성을 Raman Spectroscopy 및 XRD 분석을 통하여 확인하였고, 형태학적 변화를 주사전사현미경(Scanning Electron Microscopy)을 통하여 확인하였다. 분석결과 SnO 나노구조물은 열처리 과정을 통하여 $SnO_2$ 나노구조물로 상변환 되었다.

Keywords

References

  1. L. E. Smart, E. A. Moore, Solid State Chemistry : An introduction, pp.201-204, CRC Press Taylor & Francis Group, 2005.
  2. G. Korotcenkov, S. H. Han, B. K. Cho, "Material Design for Metal Oxide Chemiresistive Gas Sensors", Journal of Sensor Science and Technology, Vol.22, No.1, pp.1-17, 2013. DOI: https://dx.doi.org/10.5369/JSST.2013.22.1.1
  3. I. Sayago, M. J. Fernandez, J. L. Fontecha, M. C. Horrillo, J. P. Santos, "Synthesis and characterization of $SnO_{2}$ nanowires grown by CVD for application as gas sensors", 2015 10th Spanish Conference on Electron Devices (CDE), Madrid, Spain, 20 April, 2015. DOI: https://dx.doi.org/10.1109/CDE.2015.7087486
  4. M, Di Giulio, G. Moicocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, "$SnO_{2}$ thin films for gas sensor prepared by r.f. reactive sputtering", Sensors and Actuators B: Chemical, Vol.25, No.1-3, pp.465-468, 1995. DOI: https://dx.doi.org/10.1016/0925-4005(94)01397-7
  5. M. Aziz, S. S. Abbas, W. R. W. Baharom, "Size-controlled synthesis of $SnO_{2}$ nanoparticles by sol-gel method", Materials Letters, Vol.91, pp.31-34, 2013. DOI: https://dx.doi.org/10.1016/j.matlet.2012.09.079
  6. G. E. Patil, D. D. Kajale, V. B. Gaikwad, G. H. Jain, "Preparation and characterization of $SnO_{2}$ nanoparticles by hydrothermal route", International Nano Letters, Vol.2, No.1, pp.2153-2155, 2012. DOI: https://dx.doi.org/10.1186/2228-5326-2-17
  7. H. Das, B. Krishnan, G. Melnychuk, Y. Koshka, "Local-loading Effect in Low-temperature Selective Epitaxial Growth of 4H-SiC by Halo-carbon Method", Materials Science Forum, Vol.600-603, pp.163-166, 2009. DOI: https://dx.doi.org/10.4028/www.scientific.net/MSF.600-603.163
  8. S. A. Oh, K. C. Kim "Growth of Two-Dimensional Nanostructured $VO_{2}$ on Graphene Nanosheets", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.9, pp.502-507, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.9.502
  9. S. Y. Ma, X. H. Yang, X. L. Huang, A. M. Sun, H. S. Song, H. B. Zhu, "Effect of post-annealing treatment on the microstructure and optical properties of ZnO/PS nanocomposite films", Journal of Alloys and Compounds, Vol.566, pp.9-15, 2013. DOI: https://dx.doi.org/10.1016/j.jallcom.2013.02.179
  10. M. A. Haque, S. Mahalakshmi, "Effect of Annealing on Structure and Morphology of Cadmium Sulphide Thin Film Prepared by Chemical Bath Deposition", Journal of Advanced Physics, Vol.3, No.2, pp.159-162, 2014. DOI: https://dx.doi.org/10.1166/jap.2014.1116
  11. Y. He, D. Li, J. Chen, Y. Shao, J. Xian, X. Zheng, P. Wang, "$Sn_{3}O_{4}$: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light", RSC Advances, Vol.4, No.3, pp.1266-1269, 2014. DOI: https://dx.doi.org/10.1039/C3RA45743E
  12. Z. R. Dai, Z. W. Pan, Z. L. Wang, "Growth and Structure Evolution of Novel Tin Oxide Diskettes", Journal of American Chemical Society, Vol.124, No.29, pp.8673-8680, 2002. DOI: https://dx.doi.org/10.1021/ja026262d
  13. Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, X. Zhao, J. Hao, M. Jiang, "Optical Properties of the High-Pressure Phases of $SnO_{2}$: First-Principles Calculation", The Journal of Physical Chemistry A, Vol.114, No.2, pp.1052-1059, 2010. DOI: https://dx.doi.org/10.1021/jp909021r