DOI QR코드

DOI QR Code

Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

  • Li, Ling (Zhejiang Provincial Key Laboratory for Chemistry and Biology Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology) ;
  • Lee, Soo Jin (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Yuan, Qiu Ping (Zhejiang Provincial Key Laboratory for Chemistry and Biology Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology) ;
  • Im, Wan Taek (Department of Biotechnology, Hankyong National University) ;
  • Kim, Sun Chang (Department of Biological Science, KAIST) ;
  • Han, Nam Soo (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
  • Received : 2016.12.27
  • Accepted : 2017.04.17
  • Published : 2018.10.15

Abstract

Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

Keywords

References

  1. Chang KH, Jee HS, Lee NK, Park SH, Lee NW, Paik HD. Optimization of the enzymatic production of 20(S)-ginsenoside Rg3 from white ginseng extract using response surface methodology. New Biotechnol 2009;26:181-6. https://doi.org/10.1016/j.nbt.2009.08.011
  2. Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19. https://doi.org/10.1007/s00253-010-2567-6
  3. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  4. Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 2005;43:456-62.
  5. Upadhyaya J, Kim MJ, Kim YH, Ko SR, Park HW, Kim MK. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J Ginseng Res 2016;40:105-12. https://doi.org/10.1016/j.jgr.2015.05.007
  6. Yang XD, Yang YY, Ouyang DS, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015;100:208-20. https://doi.org/10.1016/j.fitote.2014.11.019
  7. Shin KC, Choi HY, Seo MJ, Oh DK. Compound K production from red ginseng extract by ${\beta}$-glucosidase from Sulfolobus solfataricus supplemented with ${\alpha}$-Larabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One 2015;10:e0145876. https://doi.org/10.1371/journal.pone.0145876
  8. Kim JK, Cui CH, Liu Q, Yoon MH, Kim SC, Im WT. Mass production of the ginsenoside Rg3(s) through the combinative use of two glycoside hydrolases. Food Chem 2013;141:1369-77. https://doi.org/10.1016/j.foodchem.2013.04.012
  9. Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPDginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J Ginseng Res 2015;39:221-9. https://doi.org/10.1016/j.jgr.2014.12.003
  10. Park IH, Piao LZ, Kwon SW, Lee YJ, Cho SY, Park MK, Park JH. Cytotoxic dammarane glycosides from processed ginseng. Chem Pharm Bull 2002;50:538-40. https://doi.org/10.1248/cpb.50.538
  11. Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA. Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 2008;77:1345-50. https://doi.org/10.1007/s00253-007-1258-4
  12. Teng RW, Li HZ, Wang DZ, Yang CR. Hydrolytic reaction of plant extracts to generate molecular diversity: new dammarane glycosides from the mild acid hydrolysate of root saponins of Panax notoginseng. Helv Chim Acta 2004;87:1270-8. https://doi.org/10.1002/hlca.200490116
  13. Noh KH, Oh DK. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius. Biol Pharm Bull 2009;32:1830-5. https://doi.org/10.1248/bpb.32.1830
  14. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 2002;25:58-63. https://doi.org/10.1248/bpb.25.58
  15. Lee SY. High cell-density culture of Escherichia coli. Trends Biotechnol 1996;14:98-105. https://doi.org/10.1016/0167-7799(96)80930-9
  16. Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS. Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of ${\beta}$-glucosidase gene from Paenibacillus mucilaginosus. J Agric Food Chem 2016;64:2506-12. https://doi.org/10.1021/acs.jafc.5b04098
  17. De Leon A, Garcia B, Barba de la Rosa AP, Villasenor F, Estrada A, Lopez-Revilla R. Periplasmic penicillin G acylase activity in recombinant Escherichia coli cells permeabilized with organic solvents. Process Biochem 2003;39:301-5. https://doi.org/10.1016/S0032-9592(03)00079-7
  18. Roche ED, Sauer RT. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J 1999;18:4579-89. https://doi.org/10.1093/emboj/18.16.4579
  19. Angov E, Hillier CJ, Kincaid RL, Lyon JA. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One 2008;3:e2189. https://doi.org/10.1371/journal.pone.0002189
  20. Kondo A, Liu Y, Furuta M, Fujita Y, Matsumoto T, Fukuda H. Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzyme Microb Technol 2000;27:806-11. https://doi.org/10.1016/S0141-0229(00)00304-5
  21. Fontes EAF, Passos FML, Passos FJV. A mechanistical mathematical model to predict lactose hydrolysis by beta-galactosidase in a permeabilized cell mass of Kluyveromyces lactis: validity and sensitivity analysis. Process Biochem 2001;37:267-74. https://doi.org/10.1016/S0032-9592(01)00211-4
  22. Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-71. https://doi.org/10.1007/s10529-005-5632-y
  23. Quan LH, Min JW, Yang DY, Kim YJ, Yang DC. Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102. J Ginseng Res 2011;35:344-51. https://doi.org/10.5142/jgr.2011.35.3.344
  24. Quan LH, Piao JY, Min JW, Yang DU, Lee HN, Yang DC. Bioconversion of ginsenoside Rb1 into compound K by Leuconostoc citreum LH1 isolated from kimchi. Braz J Microbiol 2011;42:1227-37. https://doi.org/10.1590/S1517-83822011000300049
  25. Quan LH, Kim YJ, Li GH, Choi KT, Yang DC. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius. Word J Microbiol Biotechnol 2013;29:1001-7. https://doi.org/10.1007/s11274-013-1260-1
  26. Cui CH, Kim JK, Kim SC, Im WT. Characterization of a ginsenosidetransforming ${\beta}$-glucosidase from Paenibacillus mucilaginosus and its application for enhanced production of minor ginsenoside F2. PLoS One 2014;9:e85727. https://doi.org/10.1371/journal.pone.0085727

Cited by

  1. Antifeedant and ovicidal activities of ginsenosides against Asian corn borer, Ostrinia furnacalis (Guenee) vol.14, pp.2, 2018, https://doi.org/10.1371/journal.pone.0211905
  2. Complete Biotransformation of Protopanaxadiol-Type Ginsenosides into 20-O-β-Glucopyranosyl-20(S)-protopanaxadiol by Permeabilized Recombinant Escherichia coli Cells Coexpressing β-Glucosidas vol.67, pp.30, 2018, https://doi.org/10.1021/acs.jafc.9b02592
  3. The Preparation of Ginsenoside Rg5, Its Antitumor Activity against Breast Cancer Cells and Its Targeting of PI3K vol.12, pp.1, 2018, https://doi.org/10.3390/nu12010246
  4. Enzymatic Biotransformation of Ginsenoside Rb2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens vol.30, pp.3, 2018, https://doi.org/10.4014/jmb.1910.10065
  5. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
  6. Cumulative Production of Bioactive Rg3, Rg5, Rk1, and CK from Fermented Black Ginseng Using Novel Aspergillus niger KHNT-1 Strain Isolated from Korean Traditional Food vol.9, pp.2, 2018, https://doi.org/10.3390/pr9020227
  7. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production vol.41, pp.2, 2018, https://doi.org/10.1080/07388551.2020.1869691
  8. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase vol.153, pp.None, 2022, https://doi.org/10.1016/j.enzmictec.2021.109941