DOI QR코드

DOI QR Code

AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract

  • Han, Sang Yun (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kim, Juewon (Vital Beautie Research Division, Amorepacific Research and Development Center) ;
  • Kim, Eunji (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kim, Su Hwan (Vital Beautie Research Division, Amorepacific Research and Development Center) ;
  • Seo, Dae Bang (Vital Beautie Research Division, Amorepacific Research and Development Center) ;
  • Kim, Jong-Hoon (Department of Physiology, College of Veterinary Medicine, Chonbuk National University) ;
  • Shin, Song Seok (Vital Beautie Research Division, Amorepacific Research and Development Center) ;
  • Cho, Jae Youl (Department of Biotechnology and Bioengineering, Sungkyunkwan University)
  • Received : 2017.04.24
  • Accepted : 2017.06.20
  • Published : 2018.10.15

Abstract

Background: Korean ginseng (Panax ginseng) plays an anti-inflammatory role in a variety of inflammatory diseases such as gastritis, hepatitis, and colitis. However, inflammation-regulatory activity of the calyx of the P. ginseng berry has not been thoroughly evaluated. To understand whether the calyx portion of the P. ginseng berry is able to ameliorate inflammatory processes, an ethanolic extract of P. ginseng berry calyx (Pg-C-EE) was prepared, and lipopolysaccharide-activated macrophages and HEK293 cells transfected with inflammation-regulatory proteins were used to test the anti-inflammatory action of Pg-C-EE. Methods: The ginsenoside contents of Pg-C-EE were analyzed by HPLC. Suppressive activity of Pg-C-EE on NO production, inflammatory gene expression, transcriptional activation, and inflammation signaling events were examined using the Griess assay, reverse transcription-polymerization chain reaction, luciferase activity reporter gene assay, and immunoblotting analysis. Results: Pg-C-EE reduced NO production and diminished mRNA expression of inflammatory genes such as cyclooxygenase-2, inducible NO synthase, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. This extract suppressed luciferase activity induced only by nuclear factor-${\kappa}B$. Interestingly, immunoblotting analysis results demonstrated that Pg-C-EE reduced the activities of protein kinase B (AKT)1 and AKT2. Conclusion: These results suggest that Pg-C-EE may have nuclear-factor-${\kappa}B$-targeted anti-inflammatory properties through suppression of AKT. The calyx of the P. ginseng berry is an underused part of the ginseng plant, and development of calyx-derived extracts may be useful for treatment of inflammatory diseases.

Keywords

References

  1. Zou J, Guo P, Lv N, Huang D. Lipopolysaccharide-induced tumor necrosis factor-${\alpha}$ factor enhances inflammation and is associated with cancer (Review). Mol Med Rep 2015;12:6399-404. https://doi.org/10.3892/mmr.2015.4243
  2. Ferrero-Miliani L, Nielsen O, Andersen P, Girardin S. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-$1{\beta}$ generation. Clin Exp Immunol 2007;147:227-35.
  3. Roberts-Thomson IC, Fon J, Uylaki W, Cummins AG, Barry S. Cells, cytokines and inflammatory bowel disease: a clinical perspective. Expert Rev Gastroenterol Hepatol 2011;5:703-16. https://doi.org/10.1586/egh.11.74
  4. Mahla RS, Reddy CM, Prasad D, Kumar H. Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology. Front Immunol 2013;4:248.
  5. Ribeiro-Gomes F, Silva M, Dosreis G. Neutrophils, apoptosis and phagocytic clearance: an innate sequence of cellular responses regulating intramacrophagic parasite infections. Parasitology 2006;132:S61-8. https://doi.org/10.1017/S0031182006000862
  6. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2016;17:97-111. https://doi.org/10.1038/nrm.2015.14
  7. Fukata M, Abreu MT. Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol 2009;9:680-7. https://doi.org/10.1016/j.coph.2009.09.006
  8. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511. https://doi.org/10.1038/nri1391
  9. O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors redefining innate immunity. Nat Rev Immunol 2013;13:453-60. https://doi.org/10.1038/nri3446
  10. Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012;2012:512926.
  11. Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012;2012:979105.
  12. Jeon JW, Park BC, Jung JG, Jang YS, Shin EC, Park YW. The soluble form of the cellular prion protein enhances phagocytic activity and cytokine production by human monocytes via activation of ERK and $NF-{\kappa}B$. Immune Netw 2013;13:148-56. https://doi.org/10.4110/in.2013.13.4.148
  13. Kang DH, Kang SW. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol Ther 2013;21:89-96. https://doi.org/10.4062/biomolther.2013.015
  14. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014;2014:561459.
  15. Kopf M, Bachmann MF, Marsland BJ. Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 2010;9:703-18. https://doi.org/10.1038/nrd2805
  16. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014;1843:2563-82. https://doi.org/10.1016/j.bbamcr.2014.05.014
  17. Chiurchiu V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011;15:2605-41. https://doi.org/10.1089/ars.2010.3547
  18. Przemyslaw L, Boguslaw HA, Elzbieta S, Malgorzata SM. ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis. BMB Rep 2013;46:139-50. https://doi.org/10.5483/BMBRep.2013.46.3.176
  19. Blumenthal M. Asian ginseng: potential therapeutic uses. Adv Nurse Pract 2001;9:26-8.
  20. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  21. Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J. Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chin Med 2012;7:2. https://doi.org/10.1186/1749-8546-7-2
  22. Helmes S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  23. Hu SY.A contribution to our knowledge of ginseng.AmJ ChinMed 1977;5:1-23.
  24. Attele A, Wu J, Yuan C. Multiple pharmacological effects of ginseng. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  25. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851-8. https://doi.org/10.2337/diabetes.51.6.1851
  26. Lee TK, Johnke RM, Allison RR, O'Brien KF, Dobbs LJ. Radioprotective potential of ginseng. Mutagenesis 2005;20:237-43. https://doi.org/10.1093/mutage/gei041
  27. Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812:119-33. https://doi.org/10.1016/S1570-0232(04)00645-2
  28. Kim J-H. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012;36:16-26. https://doi.org/10.5142/jgr.2012.36.1.16
  29. Kim EH, Son RH, Myoung HJ, MarWC, Kim WK, Nam KW. The inhibitory effect of baicalin on the short-term food intake in C57BL/6J mice. Biomol Ther 2010;18:171-7. https://doi.org/10.4062/biomolther.2010.18.2.171
  30. Kim MY, Yoo BC, Cho JY. Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J Ginseng Res 2014;38:251-5. https://doi.org/10.1016/j.jgr.2014.06.003
  31. Wang D, Koh HL, Hong Y, Zhu HT, Xu M, Zhang YJ, Yang CR. Chemical and morphological variations of Panax notoginseng and their relationship. Phytochemistry 2013;93:88-95. https://doi.org/10.1016/j.phytochem.2013.03.007
  32. Yang Y, Yang WS, Yu T, Sung GH, Park KW, Yoon K, Son YJ, Hwang H, Kwak YS, Lee CM. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J Ethnopharmacol 2014;154:218-28. https://doi.org/10.1016/j.jep.2014.04.008
  33. Yang Y, Lee J, Rhee MH, Yu T, Baek KS, Sung NY, Kim Y, Yoon K, Kim JH, Kwak YS. Molecular mechanism of protopanaxadiol saponin fractionmediated anti-inflammatory actions. J Ginseng Res 2015;39:61-8. https://doi.org/10.1016/j.jgr.2014.06.002
  34. Hossen MJ, Jeon SH, Kim SC, Kim JH, Jeong D, Sung NY, Yang S, Baek KS, Yoon DH, Song WO, et al. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. J Ethnopharmacol 2015;168:217-28. https://doi.org/10.1016/j.jep.2015.03.043
  35. Park JG, Son YJ, Kim MY, Cho JY. Syk and IRAK1 contribute to immunopharmacological activities of anthraquinone-2-carboxlic acid. Molecules 2016;21:E809. https://doi.org/10.3390/molecules21060809
  36. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982;126:131-8. https://doi.org/10.1016/0003-2697(82)90118-X
  37. Jeong D, Yi YS, Sung GH, Yang WS, Park JG, Yoon K, Yoon DH, Song C, Lee Y, Rhee MH. Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. J Ethnopharmacol 2014;152:487-96. https://doi.org/10.1016/j.jep.2014.01.030
  38. Vo HT, Cho JY, Choi YE, Choi YS, Jeong YH. Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1. J Ginseng Res 2015;39:304-13. https://doi.org/10.1016/j.jgr.2015.02.003
  39. Park JG, Son YJ, Aravinthan A, Kim JH, Cho JY. Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells. J Ginseng Res 2016;40:431-6. https://doi.org/10.1016/j.jgr.2016.07.006
  40. Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J Ethnopharmacol 2006;103:208-16. https://doi.org/10.1016/j.jep.2005.08.009
  41. Shen T, Lee JH, Park MH, Lee YG, Rho HS, Kwak YS, Rhee MH, Park YC, Cho JY. Ginsenoside Rp 1, a ginsenoside derivative, blocks promoter activation of iNOS and Cox-2 genes by suppression of an $IKK{\beta}$-mediated $NF-{\kappa}B$ pathway in HEK293 cells. J Ginseng Res 2011;35:200-8. https://doi.org/10.5142/jgr.2011.35.2.200
  42. Park JG, Kang W-S, Park KT, Park DJ, Aravinthan A, Kim J-H, Cho JY. Anticancer effect of joboksansam, Korean wild ginseng germinated from bird feces. J Ginseng Res 2016;40:304-8. https://doi.org/10.1016/j.jgr.2016.02.002
  43. Rajaram MV, Ganesan LP, Parsa KV, Butchar JP, Gunn JS, Tridandapani S. Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol 2006;177:6317-24. https://doi.org/10.4049/jimmunol.177.9.6317
  44. Kuuliala K, Kuuliala A, Hamalainen M, Koivuniemi R, Kautiainen H, Moilanen E, Repo H, LeirisaloeRepo M. Impaired Akt phosphorylation in monocytes of patients with rheumatoid arthritis. Scand J Immunol 2017;85:155-61. https://doi.org/10.1111/sji.12521
  45. Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, Tiwari-Woodruff SK. Estrogen receptor ${\beta}$ ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 2013;56:131-44. https://doi.org/10.1016/j.nbd.2013.04.005
  46. Ogawa A, Firth AL, Ariyasu S, Yamadori I, Matsubara H, Song S, Fraidenburg DR, Yuan JXJ. Thrombin-mediated activation of Akt signaling contributes to pulmonary vascular remodeling in pulmonary hypertension. Physiol Rep 2013;1:e00190. https://doi.org/10.1002/phy2.190
  47. Mitra AD, Raychaudhuri SP, Abria CJ, Mitra A, Wright R, Ray R, Kundu-Raychaudhuri S. $1{\alpha}$, 25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 2013;133:1556-64. https://doi.org/10.1038/jid.2013.3
  48. Luo Y, Sun G, Dong X, Wang M, Qin M, Yu Y, Sun X. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PloS One 2015;10:e0120259. https://doi.org/10.1371/journal.pone.0120259
  49. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. $NF-{\kappa}B$ activation by tumour necrosis factor requires the Akt serineethreonine kinase. Nature 1999;401:82-5. https://doi.org/10.1038/43466
  50. Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, Yuan S, Liu J, Yu S, He S. Upregulation of $akt/NF-{\kappa}B-regulated$ inflammation and akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int J Nanomedicine 2016;11:6401-20. https://doi.org/10.2147/IJN.S101285
  51. Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016;39:253-60.
  52. Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 2007;404:15-21. https://doi.org/10.1042/BJ20061489

Cited by

  1. Simultaneous Evaluation of the Influence of Panax ginseng on the Pharmacokinetics of Three Diester Alkaloids after Oral Administration of Aconiti Lateralis Radix in Rats Using UHPLC/QQQ-MS/MS vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/6527549
  2. Herbal Medicine Ninjin'yoeito in the Treatment of Sarcopenia and Frailty vol.5, pp.None, 2018, https://doi.org/10.3389/fnut.2018.00126
  3. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1 vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051355
  4. Ameliorative effect of ginseng extract on phthalate and bisphenol A reprotoxicity during pregnancy in rats vol.25, pp.21, 2018, https://doi.org/10.1007/s11356-018-2299-1
  5. Protium javanicum Burm. Methanol Extract Attenuates LPS-Induced Inflammatory Activities in Macrophage-Like RAW264.7 Cells vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2910278
  6. Anti-Inflammatory Effects of Licania macrocarpa Cuatrec Methanol Extract Target Src- and TAK1-Mediated Pathways vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/4873870
  7. Trichosanthes tricuspidata Lour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6879346
  8. Antioxidant and Cytoprotective Effects of (−)-Epigallocatechin-3-(3″-O-methyl) Gallate vol.20, pp.16, 2018, https://doi.org/10.3390/ijms20163993
  9. Archidendron lucidum Exerts Anti-Inflammatory Effects by Targeting PDK1 in the NF- $ \kappa $ B Pathway vol.48, pp.2, 2018, https://doi.org/10.1142/s0192415x20500226
  10. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages vol.10, pp.2, 2018, https://doi.org/10.3390/biom10020238
  11. Ranunculus bulumei Methanol Extract Exerts Anti-Inflammatory Activity by Targeting Src/Syk in NF-κB Signaling vol.10, pp.4, 2020, https://doi.org/10.3390/biom10040546
  12. Anti-Inflammatory Functions of Alverine via Targeting Src in the NF-κB Pathway vol.10, pp.4, 2018, https://doi.org/10.3390/biom10040611
  13. Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract vol.10, pp.4, 2018, https://doi.org/10.3390/biom10040648
  14. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093058
  15. Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF-kB pathway vol.177, pp.None, 2020, https://doi.org/10.1016/j.bcp.2020.113949
  16. STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases vol.21, pp.20, 2020, https://doi.org/10.3390/ijms21207675
  17. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages vol.21, pp.24, 2018, https://doi.org/10.3390/ijms21249605
  18. Euodia pasteuriana Methanol Extract Exerts Anti-Inflammatory Effects by Targeting TAK1 in the AP-1 Signaling Pathway vol.25, pp.23, 2018, https://doi.org/10.3390/molecules25235760
  19. Sauropus brevipes ethanol extract negatively regulates inflammatory responses in vivo and in vitro by targeting Src, Syk and IRAK1 vol.59, pp.1, 2018, https://doi.org/10.1080/13880209.2020.1866024
  20. Anti-inflammatory effect of Barringtonia angusta methanol extract is mediated by targeting of Src in the NF-κB signalling pathway vol.59, pp.1, 2018, https://doi.org/10.1080/13880209.2021.1938613
  21. Pharmacological properties of ginsenosides in inflammation-derived cancers vol.476, pp.9, 2021, https://doi.org/10.1007/s11010-021-04162-w
  22. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155
  23. Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways vol.26, pp.20, 2018, https://doi.org/10.3390/molecules26206275
  24. In Vitro Photoprotective, Anti-Inflammatory, Moisturizing, and Antimelanogenic Effects of a Methanolic Extract of Chrysophyllum lucentifolium Cronquist vol.11, pp.1, 2018, https://doi.org/10.3390/plants11010094