DOI QR코드

DOI QR Code

Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy

  • Reiner, Zeljko (Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine University of Zagreb)
  • Received : 2018.10.01
  • Accepted : 2018.10.22
  • Published : 2018.12.31

Abstract

Although elevated serum low-density lipoprotein-cholesterol (LDL-C) is without any doubts accepted as an important risk factor for cardiovascular disease (CVD), the role of elevated triglycerides (TGs)-rich lipoproteins as an independent risk factor has until recently been quite controversial. Recent data strongly suggest that elevated TG-rich lipoproteins are an independent risk factor for CVD and that therapeutic targeting of them could possibly provide further benefit in reducing CVD morbidity, events and mortality, apart from LDL-C lowering. Today elevated TGs are treated with lifestyle interventions, and with fibrates which could be combined with omega-3 fatty acids. There are also some new drugs. Volanesorsen, is an antisense oligonucleotid that inhibits the production of the Apo C-III which is crucial in regulating TGs metabolism because it inhibits lipoprotein lipase (LPL) and hepatic lipase activity but also hepatic uptake of TGs-rich particles. Evinacumab is a monoclonal antibody against angiopoietin-like protein 3 (ANGPTL3) and it seems that it can substantially lower elevated TGs levels because ANGPTL3 also regulates TGs metabolism. Pemafibrate is a selective peroxisome proliferator-activated receptor alpha modulator which also decreases TGs, and improves other lipid parameters. It seems that it also has some other possible antiatherogenic effects. Alipogene tiparvovec is a nonreplicating adeno-associated viral vector that delivers copies of the LPL gene to muscle tissue which accelerates the clearance of TG-rich lipoproteins thus decreasing extremely high TGs levels. Pradigastat is a novel diacylglycerol acyltransferase 1 inhibitor which substantially reduces extremely high TGs levels and appears to be promising in treatment of the rare familial chylomicronemia syndrome.

Keywords

References

  1. Reiner Z. Statins in the primary prevention of cardiovascular disease. Nat Rev Cardiol 2013;10:453-64. https://doi.org/10.1038/nrcardio.2013.80
  2. Graham I, Cooney MT, Bradley D, Dudina A, Reiner Z. Dyslipidemias in the prevention of cardiovascular disease: risks and causality. Curr Cardiol Rep 2012;14:709-20. https://doi.org/10.1007/s11886-012-0313-7
  3. Reiner Z. Impact of early evidence of atherosclerotic changes on early treatment in children with familial hypercholesterolemia. Circ Res 2014;114:233-5. https://doi.org/10.1161/CIRCRESAHA.113.302952
  4. Reiner Z. Management of patients with familial hypercholesterolaemia. Nat Rev Cardiol 2015;12:565-75. https://doi.org/10.1038/nrcardio.2015.92
  5. De Backer G, Besseling J, Chapman J, et al. Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV, a study of the European Society of Cardiology. Atherosclerosis 2015;241:169-75. https://doi.org/10.1016/j.atherosclerosis.2015.04.809
  6. Reiner Z. Treatment of children with homozygous familial hypercholesterolaemia. Eur J Prev Cardiol 2018;25:1095-7. https://doi.org/10.1177/2047487318781360
  7. Reiner Z, Catapano AL, De Backer G, et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011;32:1769-818. https://doi.org/10.1093/eurheartj/ehr158
  8. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 2016;37:2999-3058. https://doi.org/10.1093/eurheartj/ehw272
  9. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009;297:E271-88. https://doi.org/10.1152/ajpendo.90920.2008
  10. Beigneux AP, Davies BS, Gin P, et al. Glycosylphosphatidylinositol-anchored high-density lipoproteinbinding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 2007;5:279-91. https://doi.org/10.1016/j.cmet.2007.02.002
  11. Goulbourne CN, Gin P, Tatar A, et al. The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. Cell Metab 2014;19:849-60. https://doi.org/10.1016/j.cmet.2014.01.017
  12. Surendran RP, Visser ME, Heemelaar S, et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med 2012;272:185-96. https://doi.org/10.1111/j.1365-2796.2012.02516.x
  13. Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, Bisgaier CL. Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J Biol Chem 1990;265:4266-72.
  14. Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 2014;1841:919-33. https://doi.org/10.1016/j.bbalip.2014.03.013
  15. Mehta N, Qamar A, Qu L, et al. Differential association of plasma angiopoietin-like proteins 3 and 4 with lipid and metabolic traits. Arterioscler Thromb Vasc Biol 2014;34:1057-63. https://doi.org/10.1161/ATVBAHA.113.302802
  16. Fruchart JC, Staels B, Duriez P. PPARS, metabolic disease and atherosclerosis. Pharmacol Res 2001;44:345-52. https://doi.org/10.1006/phrs.2001.0871
  17. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996;15:5336-48. https://doi.org/10.1002/j.1460-2075.1996.tb00918.x
  18. Caussy C, Charriere S, Meirhaeghe A, et al. Multiple microRNA regulation of lipoprotein lipase gene abolished by 3'UTR polymorphisms in a triglyceride-lowering haplotype harboring p.Ser474Ter. Atherosclerosis 2016;246:280-6. https://doi.org/10.1016/j.atherosclerosis.2016.01.010
  19. Hussain MM. Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 2014;25:200-6. https://doi.org/10.1097/MOL.0000000000000084
  20. Cohen DE, Fisher EA. Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin Liver Dis 2013;33:380-8. https://doi.org/10.1055/s-0033-1358519
  21. Dallinga-Thie GM, Kroon J, Boren J, Chapman MJ. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep 2016;18:67. https://doi.org/10.1007/s11886-016-0745-6
  22. Varbo A, Benn M, Tybjærg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013;61:427-36. https://doi.org/10.1016/j.jacc.2012.08.1026
  23. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011;32:1345-61. https://doi.org/10.1093/eurheartj/ehr112
  24. Gronholdt ML, Nordestgaard BG, Nielsen TG, Sillesen H. Echolucent carotid artery plaques are associated with elevated levels of fasting and postprandial triglyceride-rich lipoproteins. Stroke 1996;27:2166-72. https://doi.org/10.1161/01.STR.27.12.2166
  25. Alaupovic P, Mack WJ, Knight-Gibson C, Hodis HN. The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial. Arterioscler Thromb Vasc Biol 1997;17:715-22. https://doi.org/10.1161/01.ATV.17.4.715
  26. Ginsberg HN. New perspectives on atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 2002;106:2137-42. https://doi.org/10.1161/01.CIR.0000035280.64322.31
  27. Joshi PH, Khokhar AA, Massaro JM, et al. Remnant lipoprotein cholesterol and incident coronary heart disease: the Jackson heart and Framingham offspring cohort studies. J Am Heart Assoc 2016;5:e002765.
  28. Hegele RA, Ginsberg HN, Chapman MJ, et al. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2014;2:655-66. https://doi.org/10.1016/S2213-8587(13)70191-8
  29. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973;52:1544-68. https://doi.org/10.1172/JCI107332
  30. Veerkamp MJ, de Graaf J, Bredie SJ, Hendriks JC, Demacker PN, Stalenhoef AF. Diagnosis of familial combined hyperlipidemia based on lipid phenotype expression in 32 families: results of a 5-year follow-up study. Arterioscler Thromb Vasc Biol 2002;22:274-82. https://doi.org/10.1161/hq0202.104059
  31. MDText.com, Inc. Endotext [Internet]. South Dartmouth, MA: MDText.com, Inc.; 2000-2018 [cited 2018 Sep 10]. Available from https://www.ncbi.nlm.nih.gov/pubmed/25905160.
  32. Ariza MJ, Rioja J, Ibarretxe D, et al. Molecular basis of the familial chylomicronemia syndrome in patients from the National Dyslipidemia Registry of the Spanish Atherosclerosis Society. J Clin Lipidol 2018:S1933-2874(18)30353-2.
  33. Moulin P, Dufour R, Averna M, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): expert panel recommendations and proposal of an "FCS score". Atherosclerosis 2018;275:265-72. https://doi.org/10.1016/j.atherosclerosis.2018.06.814
  34. Johansen CT, Wang J, Lanktree MB, et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2011;31:1916-26. https://doi.org/10.1161/ATVBAHA.111.226365
  35. Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol Sci 2015;36:675-87. https://doi.org/10.1016/j.tips.2015.07.001
  36. Huff MW, Hegele RA. Apolipoprotein C-III: going back to the future for a lipid drug target. Circ Res 2013;112:1405-8. https://doi.org/10.1161/CIRCRESAHA.113.301464
  37. Baldi S, Bonnet F, Laville M, et al. Influence of apolipoproteins on the association between lipids and insulin sensitivity: a cross-sectional analysis of the RISC Study. Diabetes Care 2013;36:4125-31. https://doi.org/10.2337/dc13-0682
  38. Johansen CT, Wang J, Lanktree MB, et al. Mutation skew in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet 2010;42:684-7. https://doi.org/10.1038/ng.628
  39. Jacobson TA, Ito MK, Maki KC, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 - executive summary. J Clin Lipidol 2014;8:473-88. https://doi.org/10.1016/j.jacl.2014.07.007
  40. Klempfner R, Erez A, Sagit BZ, et al. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease: twenty-two-year follow-up of the bezafibrate infarction prevention study and registry. Circ Cardiovasc Qual Outcomes 2016;9:100-8. https://doi.org/10.1161/CIRCOUTCOMES.115.002104
  41. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol 2015;65:2267-75. https://doi.org/10.1016/j.jacc.2015.03.544
  42. Carey VJ, Bishop L, Laranjo N, Harshfield BJ, Kwiat C, Sacks FM. Contribution of high plasma triglycerides and low high-density lipoprotein cholesterol to residual risk of coronary heart disease after establishment of low-density lipoprotein cholesterol control. Am J Cardiol 2010;106:757-63. https://doi.org/10.1016/j.amjcard.2010.05.002
  43. Nichols GA, Philip S, Reynolds K, Granowitz CB, Fazio S. Increased residual cardiovascular risk in patients with diabetes and high vs. normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes Metab. 2018 [Epub ahead of print].
  44. Hulley SB, Rosenman RH, Bawol RD, Brand RJ. Epidemiology as a guide to clinical decisions. The association between triglyceride and coronary heart disease. N Engl J Med 1980;302:1383-9. https://doi.org/10.1056/NEJM198006193022503
  45. Lind L, Ingelsson E, Arnlov J, Sundstrom J, Zethelius B, Reaven GM. Can the plasma concentration ratio of triglyceride/high-density lipoprotein cholesterol identify individuals at high risk of cardiovascular disease during 40-year follow-up? Metab Syndr Relat Disord 2018;16:433-9. https://doi.org/10.1089/met.2018.0058
  46. Austin MA, Edwards KL, Monks SA, et al. Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia. J Lipid Res 2003;44:2161-8. https://doi.org/10.1194/jlr.M300272-JLR200
  47. Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in dyslipidemic patients. A position paper by the Residual Risk Reduction Initiative (R3I). Diab Vasc Dis Res 2008;4:319-35.
  48. Tverdal A, Foss OP, Leren P, Holme I, Lund-Larsen PG, Bjartveit K. Serum triglycerides as an independent risk factor for death from coronary heart disease in middle-aged Norwegian men. Am J Epidemiol 1989;129:458-65. https://doi.org/10.1093/oxfordjournals.aje.a115157
  49. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996;3:213-9.
  50. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 2007;115:450-8. https://doi.org/10.1161/CIRCULATIONAHA.106.637793
  51. Faergeman O, Holme I, Fayyad R, et al. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am J Cardiol 2009;104:459-63. https://doi.org/10.1016/j.amjcard.2009.04.008
  52. Liu J, Wang W, Wang M, et al. Impact of diabetes, high triglycerides and low HDL cholesterol on risk for ischemic cardiovascular disease varies by LDL cholesterol level: a 15-year follow-up of the Chinese Multiprovincial Cohort Study. Diabetes Res Clin Pract 2012;96:217-24. https://doi.org/10.1016/j.diabres.2011.12.018
  53. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014;384:626-35. https://doi.org/10.1016/S0140-6736(14)61177-6
  54. Ferrari R, Aguiar C, Alegria E, et al. Current practice in identifying and treating cardiovascular risk, with a focus on residual risk associated with atherogenic dyslipidaemia. Eur Heart J Suppl 2016;18 Suppl C:C2-12. https://doi.org/10.1093/eurheartj/suw009
  55. Kim EH, Lee JB, Kim SH, et al. Serum Triglyceride Levels and Cardiovascular Disease Events in Koreans. Cardiology 2015;131:228-35. https://doi.org/10.1159/000380941
  56. Iso H, Imano H, Yamagishi K, et al. Fasting and non-fasting triglycerides and risk of ischemic cardiovascular disease in Japanese men and women: the Circulatory Risk in Communities Study (CIRCS). Atherosclerosis 2014;237:361-8. https://doi.org/10.1016/j.atherosclerosis.2014.08.028
  57. Egeland GM, Igland J, Sulo G, Nygard O, Ebbing M, Tell GS. Non-fasting triglycerides predict incident acute myocardial infarction among those with favourable HDL-cholesterol: Cohort Norway. Eur J Prev Cardiol 2015;22:872-81. https://doi.org/10.1177/2047487314535681
  58. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009;302:1993-2000. https://doi.org/10.1001/jama.2009.1619
  59. Sarwar N, Sandhu MS, Ricketts SL, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010;375:1634-9. https://doi.org/10.1016/S0140-6736(10)60545-4
  60. Puri R, Nissen SE, Shao M, et al. Non-HDL cholesterol and triglycerides. Implications for coronary atheroma progression and clinical events. Arterioscler Thromb Vasc Biol 2016;36:2220-8. https://doi.org/10.1161/ATVBAHA.116.307601
  61. Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, et al. Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the Treating to New Targets (TNT) trial. Circulation 2018:pii: CIRCULATIONAHA.117.032318.
  62. Saeed A, Feofanova EV, Yu B, et al. Remnant-like particle cholesterol, low-density lipoprotein triglycerides, and incident cardiovascular disease. J Am Coll Cardiol 2018;72:156-69. https://doi.org/10.1016/j.jacc.2018.04.050
  63. Jorgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjærg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J 2013;34:1826-33. https://doi.org/10.1093/eurheartj/ehs431
  64. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 2013;45:1345-52. https://doi.org/10.1038/ng.2795
  65. Holmes MV, Asselbergs FW, Palmer TM, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J 2015;36:539-50. https://doi.org/10.1093/eurheartj/eht571
  66. Thomsen M, Varbo A, Tybjærg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem 2014;60:737-46. https://doi.org/10.1373/clinchem.2013.219881
  67. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007;298:299-308. https://doi.org/10.1001/jama.298.3.299
  68. Miller M, Cannon CP, Murphy SA, et al. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2008;51:724-30. https://doi.org/10.1016/j.jacc.2007.10.038
  69. Dewey FE, Gusarova V, O'Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med 2016;374:1123-33. https://doi.org/10.1056/NEJMoa1510926
  70. Stitziel NO, Stirrups KE, Masca NG, et al. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med 2016;374:1134-44. https://doi.org/10.1056/NEJMoa1507652
  71. Carbajo MA, Fong-Hirales A, Luque-de-Leon E, Molina-Lopez JF, Ortiz-de-Solorzano J. Weight loss and improvement of lipid profiles in morbidly obese patients after laparoscopic one-anastomosis gastric bypass: 2-year follow-up. Surg Endosc 2016;31:416-21.
  72. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a metaanalysis. Am J Clin Nutr 1992;56:320-8. https://doi.org/10.1093/ajcn/56.2.320
  73. Nordmann AJ, Nordmann A, Briel M, et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006;166:285-93. https://doi.org/10.1001/archinte.166.3.285
  74. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009;119:1322-34. https://doi.org/10.1172/JCI37385
  75. Kodama S, Horikawa C, Fujihara K, et al. Relationship between intake of fruit separately from vegetables and triglycerides - a meta-analysis. Clin Nutr ESPEN 2018;27:53-8. https://doi.org/10.1016/j.clnesp.2018.07.001
  76. Chun S, Choi Y, Chang Y, et al. Sugar-sweetened carbonated beverage consumption and coronary artery calcification in asymptomatic men and women. Am Heart J 2016;177:17-24. https://doi.org/10.1016/j.ahj.2016.03.018
  77. de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 2012;125:1735-41. https://doi.org/10.1161/CIRCULATIONAHA.111.067017
  78. Stanhope KL, Havel PJ. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am J Clin Nutr 2008;88:1733S-1737S. https://doi.org/10.3945/ajcn.2008.25825D
  79. Patel L, Alicandro G, La Vecchia C. Low-calorie beverage consumption, diet quality and cardiometabolic risk factors in British adults. Nutrients 2018;10:E1261. https://doi.org/10.3390/nu10091261
  80. Vanhees L, Geladas N, Hansen D, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur J Prev Cardiol 2012;19:1005-33. https://doi.org/10.1177/1741826711430926
  81. Kieffer SK, Zisko N, Coombes JS, Nauman J, Wisloff U. Personal activity intelligence and mortality in patients with cardiovascular disease: the HUNT Study. Mayo Clin Proc 2018;93:1191-201. https://doi.org/10.1016/j.mayocp.2018.03.029
  82. Climie RE, Wheeler MJ, Grace M, et al. Simple intermittent resistance activity mitigates the detrimental effect of prolonged unbroken sitting on arterial function in overweight and obese adults. J Appl Physiol (1985). 2018 [Epub ahead of print].
  83. Hansen D, Niebauer J, Cornelissen V, et al. Exercise prescription in patients with different combinations of cardiovascular disease risk factors: a consensus statement from the EXPERT working group. Sports Med 2018;48:1781-97. https://doi.org/10.1007/s40279-018-0930-4
  84. Karlson BW, Palmer MK, Nicholls SJ, Lundman P, Barter PJ. A VOYAGER meta-analysis of the impact of statin therapy on low-density lipoprotein cholesterol and triglyceride levels in patients with hypertriglyceridemia. Am J Cardiol 2016;117:1444-8. https://doi.org/10.1016/j.amjcard.2016.02.011
  85. Sahebkar A, Simental-Mendia LE, Mikhailidis DP, et al. Effect of omega-3 supplements on plasma apolipoprotein C-III concentrations: a systematic review and meta-analysis of randomized controlled trials. Ann Med 2018:1-11.
  86. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987;317:1237-45. https://doi.org/10.1056/NEJM198711123172001
  87. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366:1849-61. https://doi.org/10.1016/S0140-6736(05)67667-2
  88. Harmer JA, Keech AC, Veillard AS, et al. Fenofibrate effects on carotid artery intima-media thickness in adults with type 2 diabetes mellitus: a FIELD substudy. Diabetes Res Clin Pract 2018;141:156-67. https://doi.org/10.1016/j.diabres.2018.05.006
  89. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 2001;285:1585-91. https://doi.org/10.1001/jama.285.12.1585
  90. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and metaanalysis. Lancet 2010;375:1875-84. https://doi.org/10.1016/S0140-6736(10)60656-3
  91. Bezafibrate Infarction Prevention (BIP) study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 2000;102:21-7. https://doi.org/10.1161/01.CIR.102.1.21
  92. Millan J, Pinto X, Brea A, et al. Fibrates in the secondary prevention of cardiovascular disease (infarction and stroke). Results of a systematic review and meta-analysis of the Cochrane collaboration. Clin Investig Arterioscler 2018;30:30-5.
  93. Bajaj M, Suraamornkul S, Hardies LJ, Glass L, Musi N, DeFronzo RA. Effects of peroxisome proliferatoractivated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007;50:1723-31. https://doi.org/10.1007/s00125-007-0698-9
  94. Black RN, Ennis CN, Young IS, Hunter SJ, Atkinson AB, Bell PM. The peroxisome proliferator-activated receptor alpha agonist fenofibrate has no effect on insulin sensitivity compared to atorvastatin in type 2 diabetes mellitus; a randomised, double-blind controlled trial. J Diabetes Complications 2014;28:323-7. https://doi.org/10.1016/j.jdiacomp.2014.01.001
  95. Shiochi H, Ohkura T, Fujioka Y, et al. Bezafibrate improves insulin resistance evaluated using the glucose clamp technique in patients with type 2 diabetes mellitus: a small-scale clinical study. Diabetol Metab Syndr 2014;6:113. https://doi.org/10.1186/1758-5996-6-113
  96. Aguiar C, Alegria E, Bonadonna RC, et al. A review of the evidence on reducing macrovascular risk in patients with atherogenic dyslipidaemia: A report from an expert consensus meeting on the role of fenofibrate-statin combination therapy. Atheroscler Suppl 2015;19:1-12. https://doi.org/10.1016/S1567-5688(15)30001-5
  97. Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563-74. https://doi.org/10.1056/NEJMoa1001282
  98. Ginsberg HN. The ACCORD (Action to Control Cardiovascular Risk in Diabetes) Lipid trial: what we learn from subgroup analyses. Diabetes Care 2011;34 Suppl 2:S107-8. https://doi.org/10.2337/dc11-s203
  99. Simic I, Reiner Z. Adverse effects of statins - myths and reality. Curr Pharm Des 2015;21:1220-6. https://doi.org/10.2174/1381612820666141013134447
  100. Sahebkar A, Pirro M, Reiner Z, et al. A systematic review and meta-analysis of controlled trials on the effects of statin and fibrate therapies on plasma homocysteine levels. Curr Med Chem 2016;23:4490-503. https://doi.org/10.2174/0929867323666161007155310
  101. Sahebkar A, Simental-Mendia LE, Mikhailidis DP, et al. Effect of statin therapy on plasma apolipoprotein C-III concentrations: a systematic review and meta-analysis of randomized controlled trials. J Clin Lipidol 2018;12:801-9. https://doi.org/10.1016/j.jacl.2018.01.008
  102. Kotwal S, Jun M, Sullivan D, Perkovic V, Neal B. Omega 3 fatty acids and cardiovascular outcomes: systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2012;5:808-18. https://doi.org/10.1161/CIRCOUTCOMES.112.966168
  103. ASCEND Study Collaborative Group. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018 [Epub ahead of print].
  104. Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018;7:CD003177.
  105. Nicholls SJ, Lincoff AM, Bash D, et al. Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: rationale and design of the STRENGTH trial. Clin Cardiol. 2018 [Epub ahead of print].
  106. Nelson SD, Munger MA. Icosapent ethyl for treatment of elevated triglyceride levels. Ann Pharmacother 2013;47:1517-23. https://doi.org/10.1177/1060028013504079
  107. Mosca L, Ballantyne CM, Bays HE, et al. Usefulness of icosapent ethyl (eicosapentaenoic acid ethyl ester) in women to lower triglyceride levels (results from the MARINE and ANCHOR trials). Am J Cardiol 2017;119:397-403. https://doi.org/10.1016/j.amjcard.2016.10.027
  108. Bhatt DL, Steg PG, Brinton EA, et al. Rationale and design of REDUCE-IT: reduction of cardiovascular events with icosapent ethyl-intervention trial. Clin Cardiol 2017;40:138-48. https://doi.org/10.1002/clc.22692
  109. Kastelein JJ, Hallen J, Vige R, et al. Icosabutate, a structurally engineered fatty acid, improves the cardiovascular risk profile in statin-treated patients with residual hypertriglyceridemia. Cardiology 2016;135:3-12. https://doi.org/10.1159/000445047
  110. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice. Circulation 2014;129 25 suppl 2:49-73. https://doi.org/10.1161/01.cir.0000437741.48606.98
  111. Perk J, De Backer G, Gohlke H, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012;33:1635-701. https://doi.org/10.1093/eurheartj/ehs092
  112. Ray KK, Kastelein JJ, Boekholdt SM, et al. The ACC/AHA 2013 guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: the good the bad and the uncertain: a comparison with ESC/EAS guidelines for the management of dyslipidaemias 2011. Eur Heart J 2014;35:960-8. https://doi.org/10.1093/eurheartj/ehu107
  113. Reiner Z. Combined therapy in the treatment of dyslipidemia. Fundam Clin Pharmacol 2010;24:19-28. https://doi.org/10.1111/j.1472-8206.2009.00764.x
  114. Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol 2008;102 Suppl:1K-34K. https://doi.org/10.1016/j.amjcard.2008.10.002
  115. Reiner Z. Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: a clinical update. Nutr Metab Cardiovasc Dis 2013;23:799-807. https://doi.org/10.1016/j.numecd.2013.05.002
  116. Sacks FM, Hermans MP, Fioretto P, et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation 2014;129:999-1008. https://doi.org/10.1161/CIRCULATIONAHA.113.002529
  117. Reiner Z, De Bacquer D, Kotseva K, et al. Treatment potential for dyslipidaemia management in patients with coronary heart disease across Europe: findings from the EUROASPIRE III survey. Atherosclerosis 2013;231:300-7. https://doi.org/10.1016/j.atherosclerosis.2013.09.020
  118. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res 2016;118:547-63. https://doi.org/10.1161/CIRCRESAHA.115.306249
  119. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014;371:22-31. https://doi.org/10.1056/NEJMoa1307095
  120. Li Y, Li C, Gao J. Apolipoprotein C3 gene variants and the risk of coronary heart disease: a meta-analysis. Meta Gene 2016;9:104-9. https://doi.org/10.1016/j.mgene.2016.04.004
  121. Graham MJ, Lee RG, Bell TA 3rd, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res 2013;112:1479-90. https://doi.org/10.1161/CIRCRESAHA.111.300367
  122. Gaudet D, Alexander VJ, Baker BF, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 2015;373:438-47. https://doi.org/10.1056/NEJMoa1400283
  123. Yang X, Lee SR, Choi YS, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res 2016;57:706-13. https://doi.org/10.1194/jlr.M066399
  124. Arca M, Hsieh A, Soran H, Rosenblit P, O'Dea L, Stevenson M. The effect of volanesorsen treatment on the burden associated with familial chylomicronemia syndrome: the results of the ReFOCUS study. Expert Rev Cardiovasc Ther 2018;16:537-46. https://doi.org/10.1080/14779072.2018.1487290
  125. Davidson M, Stevenson M, Hsieh A, et al. The burden of familial chylomicronemia syndrome: results from the global IN-FOCUS study. J Clin Lipidol 2018;12:898-907.e2. https://doi.org/10.1016/j.jacl.2018.04.009
  126. Pecin I, Nedic M, Reiner Z. Volanesorsen (ISIS-APOCIII-LRx). Drugs Future 2016;41:417-21. https://doi.org/10.1358/dof.2016.041.07.2485368
  127. Ishibashi S, Yamashita S, Arai H, et al. Effects of K-877, a novel selective $PPAR{\alpha}$ modulator $(SPPARM{\alpha})$, in dyslipidaemic patients: a randomized, double blind, active- and placebo-controlled, phase 2 trial. Atherosclerosis 2016;249:36-43. https://doi.org/10.1016/j.atherosclerosis.2016.02.029
  128. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011;123:2292-333. https://doi.org/10.1161/CIR.0b013e3182160726
  129. Yamashita S, Arai H, Yokote K, et al. Effects of pemafibrate (K-877) on cholesterol efflux capacity and postprandial hyperlipidemia in patients with atherogenic dyslipidemia. J Clin Lipidol 2018;12:1267-79.e4. https://doi.org/10.1016/j.jacl.2018.06.010
  130. Hennuyer N, Duplan I, Paquet C, et al. The novel selective $PPAR{\alpha}$ modulator $(SPPARM{\alpha})$ pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis 2016;249:200-8. https://doi.org/10.1016/j.atherosclerosis.2016.03.003
  131. Matsuba I, Matsuba R, Ishibashi S, et al. Effects of a novel selective peroxisome proliferator-activated receptor-${\alpha}$ modulator, pemafibrate, on hepatic and peripheral glucose uptake in patients with hypertriglyceridemia and insulin resistance. J Diabetes Investig. 2018 [Epub ahead of print].
  132. Arai H, Yamashita S, Yokote K, et al. Efficacy and Safety of pemafibrate versus fenofibrate in patients with high triglyceride and low HDL cholesterol levels: a multicenter, placebo-controlled, double-blind, randomized trial. J Atheroscler Thromb 2018;25:521-38. https://doi.org/10.5551/jat.44412
  133. Fruchart JC. Selective peroxisome proliferator-activated receptor ${\alpha}$ modulators $(SPPARM{\alpha})$: the next generation of peroxisome proliferator-activated receptor ${\alpha}$-agonists. Cardiovasc Diabetol 2013;12:82. https://doi.org/10.1186/1475-2840-12-82
  134. American City Business Journals. Landmark trial entitled "PROMINENT" to explore the prevention of heart disease in diabetic patients with high triglycerides and low HDL-C [Internet]. Charlotte, NC: American City Business Journals; 2016 [cited 2018 Sep 10]. Available from http://www.bizjournals.com/prnewswire/press_releases/2016/01/12/CL94522.
  135. Liu ZM, Hu M, Chan P, Tomlinson B. Early investigational drugs targeting PPAR-${\alpha}$ for the treatment of metabolic disease. Expert Opin Investig Drugs 2015;24:611-21. https://doi.org/10.1517/13543784.2015.1006359
  136. Gaudet D, Stroes ES, Methot J, et al. Long-term retrospective analysis of gene therapy with alipogene tiparvovec and its effect on lipoprotein lipase deficiency-induced pancreatitis. Hum Gene Ther 2016;27:916-25. https://doi.org/10.1089/hum.2015.158
  137. Meyers CD, Tremblay K, Amer A, Chen J, Jiang L, Gaudet D. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis 2015;14:8. https://doi.org/10.1186/s12944-015-0006-5
  138. Kurano M, Tsukamoto K, Kamitsuji S, et al. Genome-wide association study of serum lipids confirms previously reported associations as well as new associations of common SNPs within PCSK7 gene with triglyceride. J Hum Genet 2016;61:427-33. https://doi.org/10.1038/jhg.2015.170
  139. Schlein C, Talukdar S, Heine M, et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein c atabolism in white and brown adipose tissues. Cell Metab 2016;23:441-53. https://doi.org/10.1016/j.cmet.2016.01.006
  140. Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med 2017;377:211-21. https://doi.org/10.1056/NEJMoa1612790
  141. Gaudet D, Gipe DA, Pordy R, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med 2017;377:296-7. https://doi.org/10.1056/NEJMc1705994
  142. Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med 2017;377:222-32. https://doi.org/10.1056/NEJMoa1701329
  143. Chadwick AC, Evitt NH, Lv W, Musunuru K. Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3. Circulation 2018;137:975-7. https://doi.org/10.1161/CIRCULATIONAHA.117.031335
  144. Romeo S, Pennacchio LA, Fu Y, et al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet 2007;39:513-6. https://doi.org/10.1038/ng1984
  145. Makoveichuk E, Sukonina V, Kroupa O, et al. Inactivation of LPL occurs on the surface of THP-1 macrophages where oligomers of ANGPTL4 are formed. Biochem Biophys Res Commun 2012;425:138-43. https://doi.org/10.1016/j.bbrc.2012.07.048
  146. Vatner DF, Goedeke L, Camporez JG, et al. ANGPTL8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia 2018;61:1435-46. https://doi.org/10.1007/s00125-018-4579-1

Cited by

  1. Emerging drugs for the treatment of hypercholesterolemia vol.24, pp.1, 2018, https://doi.org/10.1080/14728214.2019.1591372
  2. Safety and tolerability of injectable lipid-lowering drugs: an update of clinical data vol.18, pp.7, 2018, https://doi.org/10.1080/14740338.2019.1620730
  3. Inherited metabolic disorders and dyslipidaemia vol.73, pp.7, 2018, https://doi.org/10.1136/jclinpath-2019-205910
  4. Novel Experimental Agents for the Treatment of Hypercholesterolemia vol.13, pp.None, 2018, https://doi.org/10.2147/jep.s267376
  5. C3 and alternative pathway components are associated with an adverse lipoprotein subclass profile: The CODAM study vol.15, pp.2, 2018, https://doi.org/10.1016/j.jacl.2021.01.011