DOI QR코드

DOI QR Code

Effects of Coupling and Dispersion Agents on the Properties of Styrene-Butadiene Rubber/Butadiene Rubber Compounds Reinforced with Different Silica Contents

  • Received : 2018.06.27
  • Accepted : 2018.07.16
  • Published : 2018.09.30

Abstract

The effect of the silica content on the state and properties of silica-filled styrene-butadiene rubber/butadiene rubber (SBR/BR) compounds containing coupling and dispersion agents was evaluated by varying the content of silica from 50 to 120 phr. Bis-[(triethoxysilyl)propyl] tetrasulfide (TESPT) and zinc 2-ethylhexanoate (ZEH) were used as the coupling and dispersion agents, respectively. The maximum silica content in the pristine material was 80 phr, which increased to 120 phr upon the addition of TESPT and ZEH. The incorporation of TESPT considerably improved most of the rubber properties due to its coupling action and the suppression of silica flocculation, while further addition of ZEH resulted in additional improvements. The properties of the rubber compounds with different silica contents can be fully explained either by an enhancement of the rubber-silica interactions or by their deterioration due to an excessive amount of silica aggregates.

Keywords

References

  1. D. J. Schuring and S. Futamura, "Rolling Loss of Pneumatic Highway Tires in the Eighties", Rubber Chem. Technol., 63, 315 (1990). https://doi.org/10.5254/1.3538261
  2. G. Fontaras and Z. Samaras, "On the Way to 130 g $CO_{2}/km$ - Estimating the Future Characteristics of the Average Euro- pean Passenger Car", Energy Policy, 38, 1826 (2010). https://doi.org/10.1016/j.enpol.2009.11.059
  3. G. Heinrich and T. A. Vilgis, "Why Silica Technology Needs S-SBR in High Performance Tires?", Kautsch. Gummi Kunstst., 61, 368 (2008).
  4. P. Sae-oui, K. Suchiva, C. Sirisinha, W. Intiya, P. Yodjun, and U. Thepsuwan, "Effect of Blend Ratio and SBR Type on Properties of Carbon Black and Silica-Filled SBR/BR Tire Tread Compounds", Adv. Mater. Sci. Eng., 1 (2017).
  5. N. Hewitt, "Compounding Precipitated Silica in Elastormers", p. 1, William Andrew Publishing, Norwich U.S.A., 2007.
  6. W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Mechanistic Aspects of Silane Coupling Agents with Different Functionalities on Reinforcement of Silica-Filled Natural Rubber Compounds", Polym. Eng. Sci., DOI 10.1002/pen.23949 (2014).
  7. S.-M. Choi, E.-K. Lee, and S.-Y. Choi, "Effects of Silane- Treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy", Elastomer, 43, 147 (2008).
  8. B. Zhong, Z. Jia, D. Hu, Y. Luo, D. Jia, and F. Liu, "Enhancing Interfacial Interaction and Mechanical Properties of Styrene-Butadiene Rubber Composites via Silica-Supported Vulcanization Accelerator", Composites: Part A, 96, 129 (2017). https://doi.org/10.1016/j.compositesa.2017.02.016
  9. B. Zhong, Z. Jia, D. Hu, Y. Luo, and D. Jia, "Reinforcement and Reinforcing Mechanism of Styrene-Butadiene Rubber by Antioxidant-Modified Silica", Composites: Part A, 78, 303 (2015). https://doi.org/10.1016/j.compositesa.2015.08.030
  10. G. Seo, S. Kaang, C. K. Hong, D. S. Jung, C. S. Ryu, and D. H. Lee, "Preparation of Novel Fillers, Named Networked Silicas, and Their Effects of Reinforcement on Rubber Compounds", Polym. Int., 57, 1101 (2008). https://doi.org/10.1002/pi.2449
  11. G. Seo, S. M. Park, K. Ha, K. T. Choi, C. K. Hong, and S. Kaang, "Effectively Reinforcing Roles of the Networked Silica Prepared Using 3,3'-Bis(Triethoxysilylpropyl)tetrasulfide in the Physical Properties of SBR Compounds", J. Mater. Sci., 45, 1897 (2010). https://doi.org/10.1007/s10853-009-4175-3
  12. C. Ryu, J.-K. Yang, W. Park, Y. Seo, S. J. Kim, D. Kim, S. Park, and G. Seo, "Reinforcement of Styrene-Butadiene/Poly-butadiene Rubber Compounds by Modified Silicas with Different Surface and Networked States", J. Appl. Polym. Sci., 134, DOI: 10.1002/app.44893 (2017).
  13. L. Ladouce-Stelandre, Y. Bomal, L. Flandin, and D. Labarre, "Dynamic Mechanical Properties of Precipitated Silica Filled Rubber: Influence of Morphology and Coupling Agent", Rubber Chem. Technol., 76, 145 (2003). https://doi.org/10.5254/1.3547730
  14. C. J. Lin, T. E. Hogan, and W. L. Hergenrother, "On the Filler Flocculation in Silica and Carbon Black Filled Rubbers: Part II. Filler Flocculation and Polymer-Filler Interaction", Rubber Chem. Technol., 77, 90 (2004). https://doi.org/10.5254/1.3547816
  15. S. Mihara, R. N. Datta, and J. W. M. Noordermeer, "Flocculation in Silica Reinforced Rubber Compounds", Rubber Chem. Technol., 82, 524 (2009). https://doi.org/10.5254/1.3548262
  16. C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Roland, "Flocculation, Reinforcement, and Glass Transition Effects in Silica-Filled Styrene-Butadiene Rubber", Rubber Chem. Technol., 84, 507 (2011). https://doi.org/10.5254/1.3601885
  17. N. Sombatsompop, E. Wimolmala, and T. Markpin, "Fly-Ash Particles and Precipitated Silica as Fillers in Rubbers. II. Effects of Silica Content and Si69-Treatment in Natural Rubber/Styrene-Butadiene Rubber Vulcanizates", J. Appl. Polym. Sci., 104, 3396 (2007). https://doi.org/10.1002/app.25973
  18. K.-J. Kim and J. VanderKooi, "Effects of Zinc Soaps on TESPT and TESPD-Silica Mixtures in Natural Rubber Compounds", ACS Rubber Division Meeting, Pittsburgh, PA, Oct. 2002.
  19. Y. W. Ngeow, A. V. Chapman, J. Y. Y. Heng, D. R. Williams, S. Mathys, and C. D. Hull, "Characterization of Silica Modified with Silanes by Using Thermogravimetric Analysis Combined with Infrared Detection", Rubber Chem. Technol., DOI:10.5254/rct.18.82626 (2018).
  20. A. Y. Coran, "Vulcanization: Conventional and Dynamic", Rubber Chem. Technol., 68, 351 (1995). https://doi.org/10.5254/1.3538748
  21. J. Ramier, L. Chazeau, C. Gauthier, L. Guy, and M. N. Bouchereau, "Influence of Silica and Its Different Surface Treatments on the Vulcanization Process of Silica Filled SBR", Rubber Chem. Technol., 80, 183 (2007). https://doi.org/10.5254/1.3548165
  22. Y. Li, M. J. Wang, T. Zhang, F. Zhang, and X. Fu, "Study on Dispersion Morphology of Silica in Rubber", Rubber Chem. Technol., 67, 693 (1994). https://doi.org/10.5254/1.3538704
  23. H. H. Hassan, E. Ateia, N. A. Darwish, S. F. Halim, and A. K. Abd El-Aziz, "Effect of Filler Concentration on the Physico-Mechanical Properties of Super Abrasion Furnace Black and Silica Loaded Styrene Butadiene Rubber", Mater. Des., 34, 533 (2012). https://doi.org/10.1016/j.matdes.2011.05.005
  24. S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Elucidation of Filler-to-Filler and Filler-to-Rubber Interactions in Silica-Reinforced Natural Rubber by TEM Network Visualization", Eur. Polym. J., 54, 118 (2014). https://doi.org/10.1016/j.eurpolymj.2014.02.015
  25. B. L. Lee, "Reinforcement of Uncured and Cured Rubber Composites and Its Relationship to Dispersive Mixing-An Interpretation of Cure Meter Rheographs of Carbon Black Loaded SBR and cis-Polybutadiene Compounds", Rubber Chem. Technol., 52, 1019 (1979). https://doi.org/10.5254/1.3535250
  26. P. K. Pal and S. K. De, "Effect of Reinforcing Silica on Vulcanization, Network Structure, and Technical Properties of Natural Rubber", Rubber Chem. Technol., 55, 1370 (1982). https://doi.org/10.5254/1.3535935
  27. J.-Y. Lee, B. Ahn, W. Kim, H. Moon, H.-J. Paik, and W. Kim, "The Effect of Accelerator Contents on the Vulcanizate Structures of SSBR/Silica Vulcanizates", Compos. Interfaces, 24, 563 (2017). https://doi.org/10.1080/09276440.2017.1241559
  28. C. H. Lee and B. T. Poh, "Temperature Dependence of Mooney Scorch Time of Rubber Compounds", J. Appl. Polym. Sci., 30, 71 (1985). https://doi.org/10.1002/app.1985.070300106
  29. G. B. Ouyang, "Modulus, Hysteresis, and the Payne Effect", Kautsch. Gummi Kunstst., 59, 332 (2006).
  30. M. Alimardani, M. Razzaghi-Kashani, R. Karimi, and A. Mahtabani, "Contribution of Mechanical Engagement and Energetic Interaction in Reinforcement of SBR-Silane-Treated Silica Composites", Rubber Chem. Technol., 89, 292 (2016). https://doi.org/10.5254/rct.15.84854
  31. S. S. Sternstein, S. Amanuel, and M. L. Shofner, "Reinforcement Mechanisms in Nanofilled Polymer Melts and Elastomers", Rubber Chem. Technol., 83, 181 (2010). https://doi.org/10.5254/1.3548273
  32. A. A. Ward and A. I. Khalf, "Electrical and Mechanical Properties of SBR Filled with Carbon Black-Silica Blends", Kautsch. Gummi Kunstst., 60, 623 (2007).
  33. P. Zhang, M. Morris, and D. Doshi, "Materials Development for Lowering Rolling Resistance of Tires", Rubber Chem. Technol., 89, 79 (2016). https://doi.org/10.5254/rct.16.83805
  34. C. Ryu, S. J. Kim, D. Kim, S. Kaang, and G. Seo, "The Effect of Surface Area of Silica on Their Reinforcing Performance to Styrene-Butadiene Rubber Compounds", Elas. Compos., 51, 128 (2016). https://doi.org/10.7473/EC.2016.51.2.128
  35. D. E. Hall and J. Cal Moreland, "Fundamentals of Rolling Resistance", Rubber Chem. Technol., 74, 525 (2001). https://doi.org/10.5254/1.3547650
  36. C. J. Lin, W. Michael York, and R. J. Cody, "Silanization Characterization and Compound Properties of Silica-Filled Rubber Containing a Blocked Mercapto Silane", Rubber Chem. Technol., 90, 126 (2017). https://doi.org/10.5254/rct.16.83771