DOI QR코드

DOI QR Code

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene

  • Cao, Lan (School of Polymer Science and Engineering, Qingdao University of Science and Technology) ;
  • Zhang, Xiaojie (Elastomer Lab, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Wang, Xiaolei (School of Polymer Science and Engineering, Qingdao University of Science and Technology) ;
  • Zong, Chengzhong (School of Polymer Science and Engineering, Qingdao University of Science and Technology) ;
  • Kim, Jin Kuk (Elastomer Lab, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 투고 : 2018.09.03
  • 심사 : 2018.09.28
  • 발행 : 2018.09.30

초록

In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.

키워드

참고문헌

  1. S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, "Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites", Chem. Phy. Lett., 370, 820 (2003). https://doi.org/10.1016/S0009-2614(03)00187-8
  3. M. H. Al-Saleh and U. Sundararaj, "Electromagnetic interference shielding mechanisms of CNT/polymer composites", Carbon, 47, 1738 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
  4. W. A. Curtin and B. W. Sheldon, "CNT-reinforced ceramics and metals", Mater. Today, 7, 44 (2004).
  5. N. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, N. Ogiwara, K. Nakamura, N. Ishigaki, H. Kato, and S. Taruta, "Carbon nanotubes for biomaterials in contact with bone", Curr. Med. Chem., 15, 523 (2008). https://doi.org/10.2174/092986708783503140
  6. A. A. Koval'chuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, "Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites", Macromolecules, 41, 7536 (2008). https://doi.org/10.1021/ma801599q
  7. P. Rossi, S. Suarez, F. Soldera, and F. Mucklich, "Quantitative Assessment of the Reinforcement Distribution Homogeneity in CNT/Metal Composites", Adv. Eng. Mater., 17, 1017 (2015). https://doi.org/10.1002/adem.201400352
  8. Y. Han, X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, and Q. Li, "Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites", Sci. REPUK, 5, 11533 (2015). https://doi.org/10.1038/srep11533
  9. G. Kozlov, Z. Zhirikova, V. Aloev, and G. Zaikov, "The ultrasound processing influence on carbon nanotubes structure in polymer nanocomposites", Chem. Chem. Technol., 8, 57 (2014). https://doi.org/10.23939/chcht08.01.057
  10. G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites", J. Ind. Eng. Chem., 21, 11 (2015). https://doi.org/10.1016/j.jiec.2014.03.022
  11. M. L. Bhaisare, M. S. Khan, S. Pandey, G. Gedda, and H.-F. Wu, "Shape-oriented photodynamic therapy of cuprous oxide $(Cu_2O)$ nanocrystals for cancer treatment", RSC Adv., 7, 23607 (2017). https://doi.org/10.1039/C6RA28705K
  12. F. D. C. Fim, J. M. Guterres, N. R. Basso, and G. B. Galland, "Polyethylene/graphite nanocomposites obtained by in situ polymerization", J. Polym. Sci. Pol. Chem., 48, 692 (2010). https://doi.org/10.1002/pola.23822
  13. M. Alexandre, M. Pluta, P. Dubois, and R. Jerome, "Metallocene catalyzed polymerization of ethylene in the presence of graphite, 1. Synthesis and characterization of the composites", Macromol. Chem. Phys., 202, 2239 (2001). https://doi.org/10.1002/1521-3935(20010701)202:11<2239::AID-MACP2239>3.0.CO;2-8
  14. W. Kaminsky and K. Wiemann, "Polypropene nanocomposites by metallocene/MAO catalysts", Compos., 13, 365 (2006).
  15. D. Bonduel, S. Bredeau, M. Alexandre, F. Monteverde, and P. Dubois, "Supported metallocene catalysis as an efficient tool for the preparation of polyethylene/carbon nanotube nanocomposites: effect of the catalytic system on the coating morphology", J. Mater. Chem., 17, 2359 (2007). https://doi.org/10.1039/b701764b
  16. W. Kaminsky, A. Funck, "In Situ Polymerization of Olefins with Nanoparticles by Metallocene-Catalysis", in: Macromol. Symp., 260, 1 (2007). https://doi.org/10.1002/masy.200751401
  17. X. Wang, E. N. Kalali, and D.-Y. Wang, "An in situ polymerization approach for functionalized $MoS_2/nylon-6$ nanocom-posites with enhanced mechanical properties and thermal stability", J. Mater. Chem. A, 3, 24112 (2015).
  18. H. Zhang, J.-H. Park, Y.-K. Moon, E.-B. Ko, D.-h. Lee, Y. Hu, X. Zhang, and K.-B. Yoon, "Preparation of $graphene/MgCl_2-supported$ Ti-based Ziegler-Natta catalysts by the coagglomeration method and their application in ethylene polymerization", Chinese J. Catal., 38, 131 (2017). https://doi.org/10.1016/S1872-2067(16)62559-7
  19. H.-X. Zhang, J.-H. Park, E.-B. Ko, Y.-K. Moon, D.-h. Lee, Y.- M. Hu, X.-Q. Zhang, and K.-B. Yoon, "Comparison of the properties of graphene-and graphene oxide-based polyeth- ylene nanocomposites prepared by an in situ polymerization method", RSC Adv., 6, 73013 (2016).
  20. H.-x. Zhang, J.-H. Park, and K.-B. Yoon, "Excellent electrically conductive PE/rGO nanocomposites: In situ polymerization using rGO-Supported MAO cocatalysts", Compos. Sci. Technol., 154, 85 (2018). https://doi.org/10.1016/j.compscitech.2017.11.012
  21. G. Natta, L. Porri, and A. Carbonaro, "Polymerization of conjugated diolefins by homogeneous aluminum alkyl-titanium alkoxide catalyst systems. II. 1,2-polybutadiene and 3,4-polyisoprene", Macromol. Chem. Phys., 77, 126 (1964). https://doi.org/10.1002/macp.1964.020770112
  22. L. Zhang, Y. Luo, and Z. Hou, "Unprecedented isospecific 3, 4-polymerization of isoprene by cationic rare earth metal alkyl species resulting from a binuclear precursor", J. Am. Chem. Soc., 127, 14563 (2005).
  23. C. Bunn, "Molecular structure and rubber-like elasticity II. The stereochemistry of chain polymers", Proc. R. Soc. Lond. A, 180, 67 (1942). https://doi.org/10.1098/rspa.1942.0025
  24. A. Shanmugharaj, J. Bae, K. Y. Lee, W. H. Noh, S. H. Lee, and S. H. Ryu, "Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites", Compos. Sci. Technol., 67, 1813 (2007). https://doi.org/10.1016/j.compscitech.2006.10.021
  25. E. Kent and F. Swinney, "Properties and applications of trans-1,4-polyisoprene", Ind. Eng. Chem. Res., 5, 134 (1966). https://doi.org/10.1021/i360018a009
  26. R. Jones and Y. Wei, "Application of trans-1, 4 polyisoprene in orthopedic and rehabilitation medicine", J. Biomed. Mater. Res. A, 5, 19 (1971). https://doi.org/10.1002/jbm.820050205
  27. G. Y. Lin, S. M. Liu, and F. C. Dong, "Study on shape-memory mechanism and properties of NR/TPI blends", Applied Mechanics and Materials, 467, 146 (2014).
  28. N. Bahri-Laleh, "Interaction of different poisons with $MgCl_2/TiCl4$ based Ziegler-Natta catalysts", Appl. Surf. Sci., 379, 395 (2016). https://doi.org/10.1016/j.apsusc.2016.04.034
  29. H. Wu, W. Zhao, H. Hu, and G. Chen, "One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites", J. Mater. Chem., 21, 8626 (2011). https://doi.org/10.1039/c1jm10819k
  30. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of graphene by exfoliation of graphite using wet ball milling", J. Mater. Chem., 20, 5817 (2010). https://doi.org/10.1039/c0jm01354d
  31. C. De Rosa, F. Auriemma, O. Tarallo, R. Di Girolamo, E. M. Troisi, S. Esposito, D. Liguori, F. Piemontesi, G. Vitale, and G. Morini, "Tailoring the properties of polypropylene in the polymerization reactor using polymeric nucleating agents as prepolymers on the Ziegler-Natta catalyst granule", Polym. Chem-UK, 8, 655 (2017). https://doi.org/10.1039/C6PY01950A
  32. G. Liu, X. Zhang, T. Zhang, J. Zhang, P. Zhang, and W. Wang. "Determination of the content of Eucommia ulmoides gum by Variable Temperature Fourier Transform Infrared Spectrum", Polymer Testing, 63, 582 (2017). https://doi.org/10.1016/j.polymertesting.2017.09.023