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ABSTRACT
Arbuscular mycorrhizal fungi (AMF) are well-known for their ability to improve plant growth
and help plants withstand abiotic stress conditions. Unlike other fungi and bacteria, AMF
cannot be stored, as they are obligate biotrophs. Long-term preservation of AMF spores is
challenging and may lead to the loss of viability and efficiency. This study aimed to under-
stand the effect of prolonged subculture of AMF species on the growth and glomalin-related
soil protein (GRSP) from red pepper (Capsicum annuum L.). AMF spores were mass-produced
using different techniques and subcultured in pots with sorghum sudangrass as the host
plant for 3 years. Experimental soil samples were collected from natural grassland. Five differ-
ent AMF inocula were used in triplicate as treatments. After 70days of growth, red pepper
plants were harvested and plant dry weight, plant nutrient content, mycorrhizal colonization,
AMF spore count, and soil glomalin content were determined. AMF-treated plants displayed
higher dry weight than controls, with only fruit dry weight being significantly different.
Similarly, significant differences in phosphorous and potassium contents of the above-ground
plant parts were observed between mycorrhizal and control treatments. In addition, soil
GRSP content was significantly higher in plants inoculated with Rhizophagus sp. and
Gigaspora margarita. The increased plant growth and GRSP content suggest that AMF can be
maintained for 3 years without losing their efficiency if subcultured regularly with different
symbiotic host plants.
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1. Introduction

Most plants require microbial symbiosis for a more
efficient uptake of nutrients from the soil.
Arbuscular mycorrhizal fungi (AMF) are microor-
ganisms that form symbiotic associations with plants
and facilitate efficient plant uptake of nutrients from
the soil [1]. Most AMF species positively influence
plant growth, even under adverse environmental
conditions [2]. AMF also improve plant nutrient
uptake by extending their hyphae in the soil. In add-
ition, glomalin protein released from AMF hyphae
aggregates soil and improves soil fertility [3].
Glomalin refers to a group of soil proteins that are
proposed to be partially produced by AMF [4].
Production of glomalin proteins varies depending
on the function of the AMF species and the
particular host plant [5]. Previous reports have pro-
posed that AMF hyphae indirectly affect soil aggre-
gation [4,6]. Schreiner et al. [7] reported that
Funneliformis mosseae (formerly Glomus mosseae)
significantly improves water-stable aggregation

compared to Claroideoglomus etunicatum (formerly
G. etunicatum) and Gigaspora rosea, suggesting that
each AMF species varies in its soil aggrega-
tion ability.

The efficiency of mycorrhizal association with
plant roots varies depending on the plant species
and AMF involved [8]. Although the application of
AMF is encouraged to improve the sustainability of
organic agriculture, the amount of AMF inoculum
required for large-scale application cannot be
achieved in a cost-effective manner using current
mass-production techniques [9]. For instance, aero-
ponic [10] and root organ culture [11] methods are
limited to the laboratory scale and are costly for
AMF mass production.

AMF inoculation significantly improves the
growth of various plants including maize, cotton,
tomato, orange, and pepper [12–14]. However,
maintenance and storage techniques of this obligate
biotroph over the long-term remain challenging.
Varga et al. [15] proposed a cold storage technique
for maintaining AMF over an extended period of
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time. Although the spores remain intact during the
storage period, the viability of AMF spores may be
reduced during cold storage. Ruiz-Lozana and
Azcon [16] maintained AMF spores in soils with
different water potentials and found that the number
of spores was dramatically reduced when the sub-
strate dried. These findings suggest that an effective
alternative method is required to maintain AMF
spores for extended times without reducing their
viability and efficiency.

Long-term subculture of AMF spores in pots with
continuous crop rotation has recently attracted
attention, as it is less artificial and closer to the field
condition. The present study aimed to assess the
effect of long-term subcultured AMF on the growth
of red pepper (Capsicum annuum L.) and on the
content of red pepper glomalin-related soil pro-
tein (GRSP).

2. Materials and methods

2.1. Strain details and initial spore count

AMF strains, method of propagation, storage period
used in this study, and culture collection center
deposit numbers are provided in Table 1. AMF
spores were mass-produced using different techni-
ques including the slide method and monosporic
culture. The mass-produced spores were regularly
subcultured and maintained in pots with continuous
crop rotation for 3 years. Sorghum sudangrass was
used as the host plant. The initial spore count of the
soil samples was assessed using wet sieving and a
decanting method as previously described [17], fol-
lowed by sucrose centrifugation.

2.2. Soil sample collection and initial
soil analysis

Experimental soil samples were collected from nat-
ural grasslands at Wanju-gun, South Korea. No agri-
cultural practices were conducted in these fields.
The natural grassland was rich in hairy vetch (Vicia
villosa) and other common weeds. The collected
soils were subjected to initial soil analysis. The initial
soil properties of the natural grassland soil were as
follows: pH 5.54, 0.17 dS/cm electrical conductivity,
2.70mg/kg available phosphorus, 0.03% total nitro-
gen, 0.18 cmol/kg potassium, 1.98 cmol/kg calcium,
2.25 cmol/kg magnesium, and 0.08 cmol/kg sodium.

2.3. Pot preparation and inoculum application

Collected bulk soil was consecutively sterilized for
3 days at 121 �C for 15min to kill all microorgan-
isms. The amount of fertilizer and compost mixed
with the soil was determined according to the
recommendation of the Rural Development
Administration of Korea, except for phosphorus (P).
Only 10% of the recommended P was added to pro-
mote AMF colonization. The sterilized soils (4 kg)
were added to the pots. Red pepper seeds were sur-
face-sterilized with 70% ethanol for 1min, followed
by 2% sodium hypochlorite for 1min, and washed
5–7 times with sterile distilled water. Sterilized seeds
were sown in seedling trays containing sterilized
commercial nursery soil. After 5 days of growth, the
seedlings were transplanted to pots containing steri-
lized natural grassland soil. Except for the control,
each treatment received 100 g of the AMF inoculum
(each inoculum containing approximately 250 spores
and 35 root bits). Controls received no AMF inocu-
lation. The AMF inoculum was placed 1 cm below
the root zone of the red pepper seedlings. The pot-
ted red pepper plants were maintained in the green-
house for 70 days.

2.4. AMF inoculation effect on red
pepper growth

During the growth period, the numbers of leaves
and fruits were checked every week. Plants were har-
vested 70 days after sowing and the fresh weight and
dry weight were measured separately for the shoot,
root, and fruits. Total nutrient (T-N) in the plant
tissues was analyzed using the Kjeldahl method.
Other nutrients including phosphorus (P), potas-
sium (K), calcium (Ca), and magnesium (Mg) were
analyzed by inductively coupled plasma optical emis-
sion spectrometry (ICP-OES).

2.5. Mycorrhizal parameters

Mycorrhizal spore count was determined using a
wet sieving and decanting method. AMF coloniza-
tion in red pepper roots was assessed as previously
described [18]. Briefly, the roots were first washed
with 10% KOH for 10min in a water bath at 90 �C.
Next, the roots were washed with tap water. Root
fragments were softened in 2% HCl for 10min at
room temperature (18–22 �C). After discarding the

Table 1. Arbuscular mycorrhizal strains used in this study.
Strain name Propagation technique Storage period Culture number References

Claroideoglomus etunicatum Monosporic culture 2013–2016 BEG247 Lee et al. [22]
Rhizophagus sp. RK4 Monosporic culture 2013–2016 KCTC18354P Krishnamoorthy et al. [23]
Funneliformis mosseae Single spore inoculation method 2013–2016 BEG12 Unpublished data
Gigaspora margarita S-23 Slide method 2013–2016 KCTC18540P Selvakumar et al. [9]
Claroideoglomus lamellosum S-11 Slide method 2013–2016 KCTC18443P Selvakumar et al. [9]
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HCl, root fragments were stained with 0.5% Trypan
blue in lactoglycerol at 90 �C for 10min. The stain-
ing solution was discarded and stained roots were
washed with tap water. To remove excess stain, the
roots were immersed in a destaining solution (lacto-
glycerol) overnight and then checked for coloniza-
tion. Lactoglycerol solution was prepared using
lactic acid, glycerol, and water in a ratio of
875:62.5:62.5. The stained root fragments (1 cm)
were arranged on glass slides and observed under a
microscope for the presence of hyphae, vesicles, and
arbuscules. Scoring was conducted based on the
intensity of colonization (0–5) and based on arbus-
cule intensity (A0–A3) as previously described [19].

2.6. Post-experiment soil properties and soil
glomalin content

After the experiment, soil properties of all treat-
ments were determined using standard laboratory
protocols. Easily extractable GRSP (EE-GRSP) and
total extractable GRSP (TE-GRSP) contents were
determined. For EE-GRSP, 1 g of soil sample was
mixed with 8mL of 20mM citrate solution (pH
7.0) and autoclaved for 30min at 121 �C. After
cooling to room temperature, samples were centri-
fuged at 8000�g for 20min and the supernatant
was collected and stored at 4 �C until use. For TE-
GRSP, the remaining soil pellet was dissolved in
50mM citrate solution (pH 8.0) and autoclaved for
1 h at 121 �C and centrifuged as described for EE-
GRSP. The supernatant was collected and this
step was repeated another 3–4 times until the

reddish-brown color in the supernatant disap-
peared. Supernatants collected by TE-GRSP extrac-
tion were pooled and protein was measured using
the Bradford method [20]. Bovine serum albumin
was used as a standard.

2.7. Data analysis and statistical analysis

The relationships between soil properties and soil
glomalin content were analyzed by Pearson’s correl-
ation coefficient analysis with SPSS software (SPSS,
Inc., Chicago, IL). Data were subjected to analysis of
variance and the mean significant differences were
compared by Tukey’s range test at p< .05. All data
were analyzed using SAS package, Version 9.2 (SAS,
Inc., Cary, NC).

3. Results

Mycorrhizal inoculation had a positive effect on red
pepper plant growth in terms of dry weight. All
AMF-treated plants had higher shoot and root dry
weights than non-inoculated plants. However, the
difference was not significantly different (Figure
1(A,B)). Mycorrhizal plants showed increased fruit
dry weight. Inoculation with Rhizophagus sp. and G.
margarita significantly increased fruit dry weight
compared to non-inoculated plants (Figure 1(C)).
Similarly, mycorrhizal plants showed a significantly
higher number of fruits than non-mycorrhizal plants
(Figure 1(D)).

After harvest, pots inoculated with Rhizophagus
sp. and C. lamellosum had produced the highest

Figure 1. Mycorrhizal inoculation effect on red pepper plant growth. (A) Shoot dry weight; (B) Root dry weight; (C) Fruit dry
weight; and (D) Number of fruits. Each value represents the mean of three replicates ± standard error. T1: Control; T2: C. etuni-
catum; T3: Rhizophagus sp.; T4: F. mosseae; T5: G. margarita; T6: C. lamellosum.
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number of spores (Figure 2(A)). C. etunicatum
showed significantly higher root colonization, fol-
lowed by Rhizophagus sp. and C. lamellosum (Figure
2(B)). Although mycorrhizal pots showed higher
amounts of EE-GRSP, only G. margarita showed a
significant difference from non-mycorrhizal pot soil
(Figure 2(C)). The same trend in EE-GRSP was
observed for TE-GRSP where G. margarita-inocu-
lated pot soils showed significantly higher TE-GRSP
(Figure 2(D)) compared to non-mycorrhizal pot soil.

Mycorrhizal plants showed higher nutrient con-
tents than non-mycorrhizal plants in shoots
(Table 2). However, the differences were not signifi-
cantly high, except for P. Although high amounts of
P, K, and Ca were observed in mycorrhizal roots,
the differences were not significant compared to
non-mycorrhizal plants (Table 2). The high amounts
of P in red pepper shoots and roots suggest that
mycorrhizal inoculation effectively improved P
uptake by plants.

To understand the relationship between glomalin
production and soil properties, post-experiment soil
properties were correlated with spore count, colon-
ization, and glomalin content. Soil P and Ca con-
tents were significantly influenced by glomalin
production (Table 3). Mycorrhizal spore production
and mycorrhizal colonization showed no correlation
with the soil properties studied.

4. Discussion

Microorganisms play a vital role in enhancing plant
nutrient uptake and maintaining soil biological

activities. Although soil contains both beneficial and
pathogenic microbes, beneficial microbes such as
plant growth-promoting bacteria and AMF have
received attention because they are environmentally
friendly bio-fertilizers. AMF are recognized for their
ability to improve plant growth and help plants
withstand harsh environmental conditions [21]. In
addition, AMF improve soil fertility by producing
glomalin-related soil proteins. Despite the many
beneficial roles proposed for AMF, commercializa-
tion of this obligate biotroph remains limited
because of the lack of cost-efficient mass-production
techniques and possible effects of preservation tech-
niques on efficiency. The current study examined
the effects of long-term subculture of AMF spores
on red pepper plant growth and gloma-
lin production.

The AMF spores used in this study were previ-
ously mass-produced and were reported to signifi-
cantly improve plant growth [22,23]. AMF
inoculation was shown to significantly increase pep-
per growth [24,25], even under harsh environmental
conditions [26]. The use of the same crop in the
present study may improve the understanding of the
effect of long-term subcultured AMF on plant
growth. Mycorrhizal plants enhanced red pepper
plant growth compared to non-mycorrhizal plants.
Ortas et al. [27] reported that mycorrhizal spores
inoculated with pepper plants had significantly
higher shoot dry weight and root dry weight and
even flowered earlier than non-mycorrhizal plants.
We also observed that mycorrhizal plants had a sig-
nificantly higher number of dry fruits and heavier

Figure 2. Mycorrhizal inoculation effect on spore production and glomalin content. (A) Spore count; (B) Mycorrhizal root colon-
ization; (C) EE-GRSP content; and (D) TE-GRSP content. Each value represents the mean of three replicates ± standard error. T1:
Control; T2: C. etunicatum; T3: Rhizophagus sp.; T4: F. mosseae; T5: G. margarita; T6: C. lamellosum.
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dry fruits than non-mycorrhizal plants. In addition,
the mycorrhizal effect on plant nutrient accumula-
tion was also considerably higher than on non-
mycorrhizal plants.

Mycorrhizal colonization is an important param-
eter in studies on the efficiency of AMF, as it is
involved in nutrient transport in plants. AMF colon-
ization efficiency was higher when fresh spores were
used, although a slight decrease in AMF colonization
was evident after long-term subculture. In our previ-
ous study [9], freshly mass-produced G. margarita
and C. lamellosum spores had higher colonization
percentages, although the colonization efficiency
decreased by nearly twofold after long-term subcul-
ture. Ruiz-Lozano and Azcon [16] also reported that
the viability and infection rate declined dramatically
after long-term storage of AMF spores. Varga et al.
[15] reported that even after prolonged cold storage
of AMF spores, most spores were viable. However,
when these spores were introduced in the experi-
mental plots, no root colonization was observed
even after 21months of inoculation because the
spores did not germinate. These results suggest that
cold storage techniques may preserve the viability of
spores for an extended time, but it reduces AMF
spore germination and colonization efficiency. A
previous study by Trejo-Aguilar et al. [28] showed
that the use of a single host for continuous crop

rotation in trap cultures decreased the diversity of
AMF spores. The spores used in this study were
maintained in a trap culture with continuous crop
rotation using a single host plant, which may have
influenced the efficiency of AMF spores.

Glomalin plays an important role in aggregating
and increasing the water holding capacity of soil.
We found that different AMF species produced dif-
ferent amounts of glomalin. Furthermore, there was
no correlation between glomalin levels and the per-
centage of AMF colonization. Soil nutrient contents
may alter glomalin production by AMF [29,30]. In
the present study, a positive correlation was demon-
strated between glomalin production and soil chem-
ical properties such as P and Ca, suggesting that
higher P and Ca contents in soil influence gloma-
lin production.

The use of AMF spores that have been subcul-
tured for an extended period of time can increase
plant growth, particularly fruit dry weight and the
number of fruit produced. AMF inoculation also
increases plant nutrient uptake and glomalin-related
soil protein content. Our results and those of Trejo-
Aguilar et al. [28] suggest that long-term subculture
of AMF spores without a loss of viability and effi-
ciency can be achieved if the host plant is changed
during every crop rotation to increase AMF
colonization.

Table 2. Inoculation effect of AMF strains on nutrient accumulation in red pepper shoot and root tissues.
(mg/plant)

Plant Treatments T-N (%) P K Ca Mg

Shoot T1 1.46 ± 0.23 a 09.39 ± 2.25 b 284.12 ± 69.83 a 39.27 ± 7.27 a 29.08 ± 5.72 a
T2 1.39 ± 0.13 a 16.28 ± 1.97 ab 360.49 ± 11.21 a 50.17 ± 4.72 a 34.09 ± 2.79 a
T3 1.51 ± 0.20 a 13.30 ± 3.91 ab 311.28 ± 101.08 a 38.44 ± 8.89 a 27.01 ± 5.86 a
T4 1.56 ± 0.08 a 13.48 ± 2.27 ab 333.18 ± 19.63 a 42.58 ± 2.42 a 30.10 ± 1.29 a
T5 1.12 ± 0.01 a 19.66 ± 3.54 a 376.06 ± 22.41 a 50.39 ± 3.04 a 37.07 ± 2.98 a
T6 1.10 ± 0.02 a 15.64 ± 2.74 ab 356.00 ± 50.01 a 41.23 ± 5.42 a 29.83 ± 4.15 a

Root T1 1.63 ± 0.19 a 1.99 ± 0.52 a 47.22 ± 5.25 a 07.66 ± 2.14 a 06.80 ± 1.13 a
T2 1.56 ± 0.12 a 3.70 ± 0.15 a 51.64 ± 3.51 a 13.06 ± 1.71 a 13.03 ± 1.19 a
T3 1.64 ± 0.13 a 2.84 ± 0.93 a 50.52 ± 17.7 a 09.97 ± 3.36 a 10.31 ± 3.64 a
T4 1.38 ± 0.09 a 3.38 ± 0.29 a 59.01 ± 0.53 a 12.73 ± 1.29 a 12.53 ± 1.39 a
T5 1.23 ± 0.09 a 4.06 ± 1.00 a 53.44 ± 3.25 a 15.12 ± 5.56 a 13.18 ± 4.10 a
T6 1.25 ± 0.07 a 3.43 ± 0.92 a 66.16 ± 6.48 a 13.21 ± 2.67 a 12.43 ± 2.69 a

T1: Control; T2: C. etunicatum; T3: Rhizophagus sp.; T4: G. mosseae; T5: G. margarita; T6: C. lamellosum. Each value represents the mean of three repli-
cates ± standard error. Each value in a column followed by the same letter was not significantly different at p� .05.

Table 3. Relationship between soil properties and soil glomalin content according to Pearson’s correlation coeffi-
cient analysis.
Properties Av. P2O5 K Ca Mg T-N Spore count Colonization EE-GRSP TE-GRSP

Av. P2O5 1
K �.409 1
Ca .632 �.549 1
Mg �.410 .888� �.582 1
T-N �.591 �.281 �.507 �.109 1
Spore count .217 �.512 .094 �.068 .396 1
Colonization .234 �.729 �.029 �.441 .617 .812� 1
EE-GRSP .852� �.387 .872� �.411 �.761 .084 �.065 1
TE-GRSP .897� �.554 .830� �.583 �.633 .137 .123 .966�� 1
�p< .05.��p< .01.
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