DOI QR코드

DOI QR Code

Synthesis of Amino Acid-based Anionic Surfactants from Coconut Oil and Characterization of Interfacial Properties

코코넛 오일로부터 유래된 아미노산계 음이온 계면활성제의 합성 및 계면 특성 연구

  • Yea, DaNan (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jo, SeonHui (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 예다난 (동국대학교 서울 공과대학 화공생물공학과) ;
  • 조선희 (동국대학교 서울 공과대학 화공생물공학과) ;
  • 임종주 (동국대학교 서울 공과대학 화공생물공학과)
  • Received : 2018.04.13
  • Accepted : 2018.05.17
  • Published : 2018.10.10

Abstract

In this study, two types of amino acids-based anionic biosurfactants such as potassium cocoyl glutamate (CTK) and sodium cocoyl glutamate (CTN) were synthesized from coconut oils and the structure elucidation of CTK and CTN was carried out by using FT-IR, $^1H-NMR$ and $^{13}C-NMR$ spectrophotometries. Measurements of interfacial properties such as static and dynamic surface tensions and emulsification activity showed that both CTK and CTN were surface-active and effective in lowering the interfacial free energy. In particular, the CTK surfactant was found to be more efficient in reducing the interfacial free energy since the larger number of CTK molecules was preferentially adsorbed at the air-water interface due to the higher hydrophobicity and larger mobility of CTK than those of using CTN, indicating possible uses in cosmetics and household products formulation.

본 연구에서는 천연 유래의 코코넛 오일을 원료로 사용하여 2종류의 아미노산계 음이온 생체계면활성제 포타슘 코코일 글루타메이트(potassium cocoyl glutamate, CTK)와 소듐 코코일 글루타메이트(sodium cocoyl glutamate, CTN)를 합성하였으며, 합성한 계면활성제의 구조를 FT-IR, $^1H-NMR$$^{13}C-NMR$ 분석을 통하여 규명하였다. 합성한 계면활성제에 대하여 정적 및 동적 표면장력과 유화력 등의 계면 물성을 측정한 결과, CTK와 CTN 모두 계면 활성이 우수하고 계면 에너지를 낮추는데 효과적임을 알 수 있었다. 특히, CTK 계면활성제가 CTN 계면활성제와 비교하여 계면 에너지를 낮추는데 보다 효과적이었는데 이는 CTK가 소수성이 더 크고 계면활성제 단분자가 벌크 용액으로부터 공기와 수용액의 계면으로 이동하는 속도가 빨라서 공기와 수용액의 계면이 계면활성제 단분자에 의하여 더 짧은 시간에 포화되기 때문임을 알 수 있었으며, 생활용품이나 화장품 제조에 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. D. S. Keler and P. Luner, Surface energetics of calcium carbonates using inverse gas chromatography, Colloids Surf., 161, 401-415 (2000). https://doi.org/10.1016/S0927-7757(99)00212-5
  2. I. M. Banat, R. S. Makkar, and S. S. Cameotra, Potential commercial applications of microbial surfactants, Appl. Microbiol. Biotechnol., 53, 495-508 (2000). https://doi.org/10.1007/s002530051648
  3. Z. N. Patel and N. Saraswathy, Biosurfactant: an environment friendly substitute to surfactant, World J. Pharm. Res., 3, 1968-1977 (2014).
  4. S. Vijayakumar and V. Saravanan, Biosurfactants-types, sources and applications. research, Res. J. Microbiol., 10, 181-192 (2015). https://doi.org/10.3923/jm.2015.181.192
  5. K. Holmberg, Natural surfactants, Curr. Opin. Colloid Interface Sci., 6, 148-159 (2001). https://doi.org/10.1016/S1359-0294(01)00074-7
  6. Q. Q. Zhang, B. X. Cai, W. J. Xu, H. Z. Gang, J. F. Liu, S. Z. Yang, and B. Z. Mu, Novel zwitterionic surfactant derived from castor oil and its performance evaluation for oil recovery, Colloids Surf. A, 483, 87-95 (2015). https://doi.org/10.1016/j.colsurfa.2015.05.060
  7. Y. K. Yoon and K. S. Choi, Studies on physical behavior of alkyl polyglucosides (I) - Interfacial activities and detergency, J. Korean Ind. Eng. Chem., 5, 451-456 (1994).
  8. E. Haba, M. J. Espuny, M. Busquets, and A. Manresa, Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils, J. Appl Microbiol., 88, 379-387 (2000). https://doi.org/10.1046/j.1365-2672.2000.00961.x
  9. L. Perez, A. Pinazo, R. Pons, and M. Infante, Gemini surfactants from natural amino acids, Adv. Colloid Interface Sci., 205, 134-155 (2014). https://doi.org/10.1016/j.cis.2013.10.020
  10. A. Kundu, S. Dasmandal, T. Majumdar, and A. Mahapatra, Effect of anionic biocompatible amino acid surfactant and sodium dodecyl sulfate on the rate of alkaline hydrolysis of tris(2,2-bipyridine) iron(II) complex: A comparative study, Colloids Surf. A, 419, 216-222 (2013). https://doi.org/10.1016/j.colsurfa.2012.11.072
  11. H. Yokota, K. Sagawa, C. Eguchi, and M. Takehara, New amphoteric surfactants derived from lysine. I. Preparation and properties of N-acyl lysine, J. Am. Oil Chem. Soc., 62, 1716-1719 (1985). https://doi.org/10.1007/BF02541673
  12. G. Baschang, A. Hartmann, and O. Wacker, Lipopeptides having antitumor activity. US Patent 4,666,886 A (1987).
  13. D. B. Barun, Developments with lipoaminoacids and their salts, Cosmet. Toiletries, 104, 92-94 (1989).
  14. C. M. C. Faustino, A. R. T. Calado, and L. Garcia-Rio, Interactions between $\beta$-cyclodextrin and an amino acid based anionic gemini surfactant derived from cysteine, J. Colloids Interface. Sci., 367, 286-292 (2012). https://doi.org/10.1016/j.jcis.2011.07.101
  15. M. R. Infante, A. Pinazo, and J. Seguer, Non-conventional surfactants from amino acids and glycolipids: structure, preparation and properties, Colloids Surf. A, 123-4, 49-70 (1997). https://doi.org/10.1016/S0927-7757(96)03793-4
  16. M. C. Moran, A. Pinazo, L. Perez, P. Clapes, M. Angelet, M. T. Garcia, M. P. Vinardell, and M. R. Infante, "Green" amino acid-based surfactants, Green Chem., 114, 233-240 (2004).
  17. T. Suyama, T. Toyoda, and S. Kanao, Aliphatische acylaminosauren. n-acyl-aminosauren. II, J. Pharm. Soc. Jpn., 86, 967-972 (1966). https://doi.org/10.1248/yakushi1947.86.10_967
  18. T. Y. Kim, S. C. Kim, S. J. Lee, J. H. Lee, and K. D. Nam, Studies on the surfactants of the n-acyl amino acid (part 8) (cmc and emulsion stability of n-acyl amino acid type anionic surfactant), J. Korean Ind. Eng. Chem., 6, 785-794 (1995).
  19. M. R. Infante, A. Pinazo, and J. Seguer, Non-conventional surfactants from amino acids and glycolipids: Structure, preparation and properties, Colloids Surf. A, 123-124, 49-70 (1997). https://doi.org/10.1016/S0927-7757(96)03793-4
  20. M. Gerova, F. Rodrigues, J.-F. Lamere, A. Dobrev, and S. Fery-Forgues, Self-assembly properties of some chiral N-palmitoyl amino acid surfactants in aqueous solution, J. Colloids Interface Sci., 319, 526-533 (2008). https://doi.org/10.1016/j.jcis.2007.12.004
  21. I. Anastasios, T. Mitsionis, and C. Vaimakis, Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods, Chem. Phys. Lett., 547, 110-113 (2012). https://doi.org/10.1016/j.cplett.2012.07.059
  22. J. Oshitani, S. Takashina, M. Yoshida, and K. Gotoh, Difference in screening effect of alkali metal counterions on H-AOT-based W/O microemulsion formation, Langmuir, 26, 2274-2278 (2010). https://doi.org/10.1021/la902700j
  23. M. Camp and K. Durham, The foaming of sodium laurate solutions-Factors influencing foam stability, J. Phys. Chem., 59, 993-997 (1955). https://doi.org/10.1021/j150532a001
  24. S. O. Oh and D. O. Shah, Effect of counterions on the interfacial tension and emulsion droplet size in the oil/water/dodecyl sulfate, J. Phys. Chem., 97, 284-286 (1993). https://doi.org/10.1021/j100104a003
  25. S. Pandey, R. P. Bagwe, and D. O. Shah, Effect of counterions on surface and foaming properties of dodecyl sulfate, J. Colloid Interface Sci., 267, 160-166 (2003). https://doi.org/10.1016/j.jcis.2003.06.001
  26. P. Mukerjee, The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids, Adv. Colloid Interface Sci., 1, 241-275 (1967).
  27. M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley, New York, USA (1978).
  28. J. N. Israelachvilli, Intermolecular and Surface Force, Academic Press, Ch.4, New York, USA (1992).
  29. J. C. Lim, E. K. Kang, J. M. Park, H. C. Kang, and B. M. Lee, Syntheses and surface active properties of cationic surfactants having multi ammonium and hydroxyl groups, J. Ind. Eng. Chem., 18, 1406-1411 (2012). https://doi.org/10.1016/j.jiec.2012.01.040
  30. J. C. Lim, J. M. Park, C. J. Park, and B. M. Lee, Synthesis and surface active properties of a gemini-type surfactant linked by a quaternary ammonium group, Colloid Polym. Sci., 291, 855-866 (2013). https://doi.org/10.1007/s00396-012-2802-z
  31. S. M. Lee, J. Y. Lee, H. P. Yu, and J. C. Lim, Synthesis of environment friendly nonionic surfactants from sugar base and characterization of interfacial properties for detergent application, J. Ind. Eng. Chem., 38, 157-166 (2016). https://doi.org/10.1016/j.jiec.2016.04.019
  32. S. M. Lee, J. Y. Lee, H. P. Yu, and J. C. Lim, Synthesis of environment friendly biosurfactants and characterization of interfacial properties for cosmetic and household products formulations, Colloid Surf. A, 536, 224-233 (2018). https://doi.org/10.1016/j.colsurfa.2017.05.001
  33. X. Liu, Y. Zhao, Q. Li, T. Jiao, and J. Niu, Surface and interfacial tension of nonylphenol polyethylene oxides sulfonate, J. Mol. Liq., 216, 185-191 (2016). https://doi.org/10.1016/j.molliq.2016.01.009
  34. L. Zhi, Q. Li, Y. Li, and Y. Song, Adsorption and aggregation properties of novel star-shaped gluconamide-type cationic surfactants in aqueous solution, Colloid Polym. Sci., 292, 1041-1050 (2014). https://doi.org/10.1007/s00396-013-3147-y
  35. H. Changa, Y. Wanga, Y. Cuia, G. Lib, B. Zhanga, X. Zhaoc, and W. Weia, Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl, Colloids Surf. A, 500, 230-238 (2016). https://doi.org/10.1016/j.colsurfa.2016.04.029
  36. J. C. Lim, S. Lee, B. J. Kim, J. G. Lee, and K. Y. Choi, Synthesis and characterization of interfacial properties of glycerol surfactant, Appl. Chem. Eng., 22, 376-383 (2011).

Cited by

  1. Modulation of the Viscosity of Guar-Based Fracking Fluids Using Salts vol.35, pp.19, 2018, https://doi.org/10.1021/acs.energyfuels.1c02835