References
- K. Tsuchiya, M. Kida, M. Kondo, H. Ono, M. Takeuchi, and T. Nishi, SCE-963, a new broad-spectrum cephalosporin: In vitro and in vivo antibacterial activities, Antimicrob. Agents Chemother., 14, 551-568 (1978).
- T. Iwahi and K. Tsuchiya, Comparative activities of cefotiam and cefazolin against urinary tract infections with Proteus mirabilis in mice, Antimicrob. Agents Chemother., 18, 257-263 (1980). https://doi.org/10.1128/AAC.18.2.257
- M. Nakao, T. Nishi, and K. Tsuchiya, In Vitro and In Vivo Morphological Response of Klebsiella pneumoniae to Cefotiam and Cefazolin, Antimicrob. Agents Chemother., 19, 901-910 (1981). https://doi.org/10.1128/AAC.19.5.901
- B. Watt and F. V. Brown, In-Vitro activity of cefotiam against bacteria of clinical interest, J. Antimicrob. Chemother., 10, 391-395 (1982). https://doi.org/10.1093/jac/10.5.391
- P. C. Fuchs, A. L. Barry, R. N. Jones, and C. Thornsberry, Cefotiam susceptibility testing criteria, J. Clin. Microbiol., 22, 1045-1047 (1985).
- J. M. Brogard, F. Jehl, B. Willemin, A. M. Lamalle, J. F. Blickle, and H. Monteil, Clinical Pharmacokinetics of cefotiam, Clin. Pharmacokinet., 17, 163-174 (1989). https://doi.org/10.2165/00003088-198917030-00003
- F. D.-M. P. Pehourcq, A. Radouane, L. Labat, and B. Bannwarth, Influence of lipophilicity on the protein binding affinity of cephalosporins, Pharm. Res., 12, 1535-1538 (1995). https://doi.org/10.1023/A:1016204025071
- S. Tawara, S. Matsumoto, Y. Matsumoto, T. Kamimura, and S. Goto, Structure-binding relationship and binding sites of cephalosporins in human serum albumin, J. Antibiot., 45, 1346-1357 (1992). https://doi.org/10.7164/antibiotics.45.1346
- A. Nasal, D. Siluk, and R. Kaliszan, Chromatographic retention parameters in medicinal chemistry and molecular pharmacology, Curr. Med. Chem., 10, 381-426 (2003). https://doi.org/10.2174/0929867033368268
- D. Dellis, C. Giaginis, and A. Tsantili-Kakoulidou, Physicochemical profile of nimesulide exploring the interplay of lipophilicity, solubility and ionization, J. Pharm. Biomed. Anal., 44, 57-62 (2007). https://doi.org/10.1016/j.jpba.2007.01.035
- C. B. Fox, R. A. Horton, and J. M. Harris, Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy, Anal. Chem., 78, 4918-4924 (2006). https://doi.org/10.1021/ac0605290
- G. Bouchard, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Lipophilicity and solvation of anionic drugs, Chem. Eur. J., 8, 3478-3484 (2002). https://doi.org/10.1002/1521-3765(20020802)8:15<3478::AID-CHEM3478>3.0.CO;2-U
- F. Reymond, V. Chopineaux-Courtois, G. Steyaert, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation, J. Electroanal. Chem., 462, 235-250 (1999). https://doi.org/10.1016/S0022-0728(98)00418-5
- G. Bouchard, A. Pagliara, G. P. van Balen, P.-A. Carrupt, B. Testa, V. Gobry, H. H. Girault, G. Caron, G. Ermondi, and R. Fruttero, Ionic partition diagram of the zwitterionic antihistamine cetirizine, HeIv. Chim. Acta, 84, 375-387 (2001). https://doi.org/10.1002/1522-2675(20010228)84:2<375::AID-HLCA375>3.0.CO;2-4
- V. Chopineaux-Courtois, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Effects of charge and intramolecular structure on the lipophilicity of nitrophenols, J. Am. Chem. Soc., 121, 1743-1747 (1999). https://doi.org/10.1021/ja9836139
- R. P. Nia, B. Su, M. A. Mendez, J.-M. Barbe, Z. Samec, and H. H. Girault, Ionic partition diagram of tetraphenylporphyrin at the water/1,2-dichloroethane interface, J. Electroanal. Chem., 656, 147-151 (2011). https://doi.org/10.1016/j.jelechem.2010.12.001
- G. Bouchard, A. Pagliara, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Theoretical and experimental exploration of the lipophilicity of zwitterionic drugs in the 1,2-dichloroethane/ water system, Pharm. Res., 19, 1150-1159 (2002). https://doi.org/10.1023/A:1019846125723
- M. Zhang, P. Sun, Y. Chen, F. Li, Z. Gao, and Y. Shao, Study of ionizable drugs transfer across the water/1,2-dichloroethane interface with phase volume ratio equal to unity using a three-electrode system, Chin. Sci. Bull., 48, 1234-1239 (2003).
- M. Zhang, P. Sun, Y. Chen, F. Li, Z. Gao, and Y. Shao, Studies of effect of phase volume ratio on transfer of ionizable species across the water/1,2-dichloroethane interface by a three-electrode setup, Anal. Chem., 75, 4341-4345 (2003). https://doi.org/10.1021/ac0263824
- F. Reymond, G. Steyaert, P.-A. Carrupt, B. Testa, and H. H. Girault, Mechanism of transfer of a basic drug across the water/l,2-dichloroethane interface: The case of quinidine, Helv. Chim. Acta, 79, 101-117 (1996). https://doi.org/10.1002/hlca.19960790111
- F. Reymond, G. Steyaert, P.-A. Carrupt, D. Morin, J.-P. Tillement, H. H. Girault, and B. Testa, The pH-partition profile of the anti-ischemic drug trimetazidine may explain its reduction of intraellular acidosis, Pharm. Res., 16, 616-624 (1999). https://doi.org/10.1023/A:1018899802836
- F. Reymond, G. Steyaert, P.-A. Carrupt, B. Testa, and H. Girault, Ionic partition diagrams: A potential-pH representation, J. Am. Chem. Soc., 118, 11951-11957 (1996). https://doi.org/10.1021/ja962187t
- M. Velazquez-Manzanares, J. Amador-Hernandez, C. Cisneros-Cisneros, and K. A. Heredia-Lezama, Triazine herbicides transfer at the water/1,2-dichloroethane interface, J. Electrochem. Soc., 155, 218-222 (2008).
- I. Hatay, B. Su, F. Li, M. A. Mendez, T. Khoury, C. P. Gros, J.-M. Barbe, M. Ersoz, Z. Samec, and H. H. Girault, Proton- coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine, J. Am. Chem. Soc., 131, 13453-13459 (2009). https://doi.org/10.1021/ja904569p
- M. A. Deryabina, S. H. Hansen, and H. Jensen, Molecular interactions in lipophilic environments studied by electrochemistry at interfaces between immiscible electrolyte solutions, Anal. Chem., 80, 203-208 (2008). https://doi.org/10.1021/ac071276t
- Z. Samec, V. Marecek, J. Koryta, and M. W. Khalil, Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry, J. Electroanal. Chem., 83, 393-397 (1977). https://doi.org/10.1016/S0022-0728(77)80186-1
- S. Liu, Q. Li, and Y. Shao, Electrochemistry at micro- and nanoscopic liquid/liquid interfaces, Chem. Soc. Rev., 40, 2236-2253 (2011). https://doi.org/10.1039/c0cs00168f
- S. N. Faisal, C. M. Pereira, S. Rho, and H. J. Lee, Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface, Phys. Chem. Chem. Phys., 12, 15184-15189 (2010). https://doi.org/10.1039/c0cp00750a
- Y. Yoshimura, N. Hamaguchi, and T. Yashiki, Synthesis and relationship between physicochemical properties and oral absorption of pivaloyloxymethyl esters of parenteral cephalosporins, Int. J. Pharm., 23, 117-129 (1985). https://doi.org/10.1016/0378-5173(85)90003-1
- M. C. Rouan, F. Abadie, A. Leclerc, and F. Juge, Systematic approach to the determination of cephalosporins in biological fluids by reversed-phase liquid chromatography, J. Chromatogr., 275, 133-144 (1983). https://doi.org/10.1016/S0378-4347(00)84352-2
- P. J. Elving, J. M. Markowitz, and I. Rosenthal, Preparation of buffer system of constant ionic strength, Anal. Chem., 28, 1179-1180 (1956). https://doi.org/10.1021/ac60115a034
- F. Reymond, P.-A. Carrupt, B. Testa, and H. H. Girault, Charge and delocalisation effects on the lipophilicity of protonable drugs, Chem. Eur. J., 5, 39-47 (1999). https://doi.org/10.1002/(SICI)1521-3765(19990104)5:1<39::AID-CHEM39>3.0.CO;2-3
- D. Homolka, K. Holub, and V. Marecek, Facilitated ion transfer across the water/nitrobenzene interface theory for single-scan voltammetry applied to a reversible system, J. Electroanal. Chem., 138, 29-36 (1982). https://doi.org/10.1016/0022-0728(82)87125-8
- P. Peljo and H. H. Girault, Liquid/liquid interfaces, electrochemistry at. In: R. A. Meyers (ed.), Encyclopedia of Analytical Chemistry, 1-11, John Wiley & Sons (2012).
- J. A. Ortuno, C. Serna, A. Molina, and A. Gil, Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors, Anal. Chem., 78, 8129-8133 (2006). https://doi.org/10.1021/ac061224o
- T. J. Stockmann, A.-M. Montgomery, and Z. Ding, Formal transfer potentials of strontium and uranyl ions at water/ 1,2-dichloroethane interfaces, Can. J. Chem., 90, 836-842 (2012). https://doi.org/10.1139/v2012-068
- V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios, J. Am. Chem. Soc., 123, 10684-10690 (2001). https://doi.org/10.1021/ja015914f
- Y. Shao, M. D. Osborne, and H. H. Girault, Assisted ion transfer at micro-ITIES supported at the tip of micropipettes, J. Electroanal. Chem., 318, 101-109 (1991). https://doi.org/10.1016/0022-0728(91)85297-3
- B. Liu and M. V. Mirkin, Electrochemistry at microscopic liquid-liquid interfaces, Electroanalysis, 12, 1433-1446 (2000). https://doi.org/10.1002/1521-4109(200012)12:18<1433::AID-ELAN1433>3.0.CO;2-2
- J. Strutwolf, M. D. Scanlon, and D. W. M. Arrigan, The performance of differential pulse stripping voltammetry at micro-liquid-liquid interface arrays, J. Electroanal. Chem., 641, 7-13 (2010). https://doi.org/10.1016/j.jelechem.2010.01.020
- V. Marecek and Z. Samec, Electrolysis at the interface between two immiscible electrolyte solutions: Determination of acetylcholine by differential pulse stripping voltammetry, Anal. Lett., 14, 1241-1253 (1981). https://doi.org/10.1080/00032718108081455