DOI QR코드

DOI QR Code

The identification of non-synonymous SNP in the Enoyl-CoA delta isomerase 2 (ECI2) gene and its Association with Meat Quality Traits in Berkshire pigs

버크셔 돼지 육질 형질과 Enoyl-CoA delta isomerase 2 (ECI2) 유전자 nsSNP의 연관성 분석

  • Hwang, Jung Hye (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • An, Sang Mi (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Park, Da Hye (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kang, Deok Gyeong (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kim, Tae Wan (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Park, Hwa Chun (Dasan Pig Breeding Co.) ;
  • Ha, Jeongim (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kim, Chul Wook (Swine Science and Technology Center, Gyeongnam National University of Science & Technology)
  • 황정혜 (경남과학기술대학교 양돈과학기술센터) ;
  • 안상미 (경남과학기술대학교 양돈과학기술센터) ;
  • 박다혜 (경남과학기술대학교 양돈과학기술센터) ;
  • 강덕경 (경남과학기술대학교 양돈과학기술센터) ;
  • 김태완 (경남과학기술대학교 양돈과학기술센터) ;
  • 박화춘 (다산육종) ;
  • 하정임 (경남과학기술대학교 양돈과학기술센터) ;
  • 김철욱 (경남과학기술대학교 양돈과학기술센터)
  • Received : 2018.08.30
  • Accepted : 2018.11.02
  • Published : 2018.12.31

Abstract

Meat quality has always been one of the most important factors that controls the choice of pork consumers and is of great interest in the pig industry. In this study, we identified a single nucleotide polymorphism (SNP) in the enoyl-CoA delta isomerase 2 (ECI2) gene in Berkshire pigs (n = 430) by analyzed the association between the SNP and meat quality traits. The non-synonymous SNP in the ECI2 gene is located at c.608 C > G and resulted in an amino acid change from threonine to serine. Significant associations between the SNP and meat quality traits, such as redness (CIE a), and the $pH_{24hr}$, were revealed in both the dominant and co-dominant models, whereas carcass weight, drip loss, and fat content and moisture content were significantly associated only with the dominant model. In barrow, the SNP was significantly associated with CIE a, drip loss, and $pH_{24hr}$, whereas in gilt, only a significant relationship with moisture content was observed. GG genotype pigs had a higher $pH_{24hr}$ and lower drip loss. Because $pH_{24hr}$ and drip loss are considered the most important meat quality traits, GG genotype pork is high-quality meat compared to that from other genotypes. In conclusion, the SNP in the ECI2 gene is significantly associated with several meat quality traits. These traits and could be as genetic markers in molecular breeding programs for improving meat quality.

본 연구는 돼지 농가의 생산성 향상 및 수익성 증대를 위한 분자 육종 기술에 적용할 유전자 마커를 개발하기 위해 수행되었다. 분석 결과에 따르면, 돼지의 간 조직을 이용하여 RNA-Sequencing을 수행한 결과 ECI2 유전자의 SNP를 발견하였고 발견된 SNP chr 7:g.2302809는 c.608로 608번째 C가 G로 변환되어 Threonine에서 Serine으로 아미노산이 치환되는 단일염기다형성임을 확인하였다. Berkshire 돼지 430으로 ECI2 유전자형과 육질 형질과의 연관성 분석 결과 도 체중, 적색도, 육즙 손실, 수분 함량 및 $pH_{24hr}$에서 유의성을 확인할 수 있었다. 그중 GG 유전자형은 $pH_{24hr}$에서 다른 유전자형에 비해 수치가 증가시키는 경향을 확인하였다. 성별에 따른 유전자형과 육질 형질과의 연관성은 거세돈에서 GG 유전자형이 육즙 손실의 감소와 $pH_{24hr}$에서 유의성이 확인되었고, 암퇘지의 GG 유전자형도 수분함량이 증가되었다. 따라서 ECI2 유전자의 GG 유전자형을 가진 돼지가 육질이 더 좋은 것으로 판단된다. 이러한 결과를 바탕으로 ECI2의 GG 유전자형을 고정시킨다면 육질이 우수한 돼지고기 생산이 가능할 것이다. 또한 ECI2 유전자를 이용하여 품종개량 및 조기 선발 기술에 바이오마커로 활용한다면 농가의 경쟁력 강화 효과에 도움이 될 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 경남과학기술대학교

References

  1. Anderson S. 2007. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: collaborative study. J. AOAC Int. 90: 1073-83.
  2. Bonneau M. & Lebret B. 2010. Production systems and influence on eating quality of pork. Meat Sci. 84: 293-300. https://doi.org/10.1016/j.meatsci.2009.03.013
  3. Cho H.R., Ha J., Kwon S.G., Hwang J.H., Park D.H., Kim T.W., Lee H.K., Song K.D., Kim S.W. & Kim C.W. 2015. Single-Nucleotide Polymorphisms in Pig EPHX1 Gene are Associated with Pork Quality Traits. Anim Biotechnol. 26: 237-42. https://doi.org/10.1080/10495398.2015.1005215
  4. Crawford S., Moeller S., Zerby H., Irvin K., Kuber P., Velleman S. & Leeds T. 2010. Effects of cooked temperature on pork tenderness and relationships among muscle physiology and pork quality traits in loins from Landrace and Berkshire swine. Meat Sci. 84: 607-12. https://doi.org/10.1016/j.meatsci.2009.10.019
  5. Hah K.-H., Kim I.-S., Jin S.-K., Nam Y.-W. & Cho J.-H. 2007. Proximate composition and physico-chemical characteristics of Berkshire pork by gender. Korean J Food Sci Anim Resour. 27: 137-41. https://doi.org/10.5851/kosfa.2007.27.2.137
  6. Huff-Lonergan E., Baas T.J., Malek M., Dekkers J.C., Prusa K. & Rothschild M.F. 2002. Correlations among selected pork quality traits. J. Anim Sci. 80: 617-27. https://doi.org/10.2527/2002.803617x
  7. Hwang J.H., An S.M., Kwon S.G., Park D.H., Kim T.W., Kang D.G., Yu G.E., Kim I.S., Park H.C., Ha J. & Kim C.W. 2017a. Associations of the Polymorphisms in DHRS4, SERPING1, and APOR Genes with Postmortem pH in Berkshire Pigs. Anim Biotechnol. 28: 288-93. https://doi.org/10.1080/10495398.2017.1279171
  8. Hwang J.H., Ha J., Kwon S., An S.M., Yu G.E., Park D.H., Kang D.G., Kim T.W., Park H.C., Kim I.S. & Kim C.W. 2017b. Nonsynonymous SNP in the Ribosomal protein S3 (RPS3) gene and its Association with Meat Quality Traits in Berkshire pigs. J. Agric. Life. Sci. 51: 151-61. https://doi.org/10.14397/jals.2017.51.1.151
  9. Hwang J.H., Kwon S.G., Park D.H., Kim T.W., Kang D.G., Ha J., Kim S.W. & Kim C.W. 2014. Molecular characterization of porcine PGM1 gene associated with meat quality traits. Canadian Journal of Animal Science. 95: 31-6.
  10. Josell A., von Seth G. & Tornberg E. 2003. Sensory quality and the incidence of PSE of pork in relation to crossbreed and RN phenotype. Meat Sci. 65: 651-60. https://doi.org/10.1016/S0309-1740(02)00268-1
  11. Kayan A., Cinar M.U., Uddin M.J., Phatsara C., Wimmers K., Ponsuksili S., Tesfaye D., Looft C., Juengst H., Tholen E. & Schellander K. 2011. Polymorphism and expression of the porcine Tenascin C gene associated with meat and carcass quality. Meat Sci. 89: 76-83. https://doi.org/10.1016/j.meatsci.2011.04.001
  12. Keogh K., Kenny D.A., Cormican P., McCabe M.S., Kelly A.K. & Waters S.M. 2016. Effect of Dietary Restriction and Subsequent Re-Alimentation on the Transcriptional Profile of Bovine Skeletal Muscle. PLoS One. 11, e0149373. https://doi.org/10.1371/journal.pone.0149373
  13. Kim H., Kim B., Kim H., Iim H., Yang H., Lee J., Joo Y., Do C., Joo S. & Jeon J. 2007. Estimation of terminal sire effect on swine growth and meat quality traits. J. Anim. Sci. Technol. 49: 161-70. https://doi.org/10.5187/JAST.2007.49.2.161
  14. Kwon S.G., Hwang J.H., Park D.H., Kim T.W., Kang D.G., Kang K.H., Kim I.-S., Ha J. & Kim C.W. 2016. Effects of a non-synonymous CBG gene single nucleotide polymorphism (SNP) on meat-quality traits in Berkshire pigs. CAN J ANIM SCI. 96: 45-51. https://doi.org/10.1139/cjas-2015-0074
  15. LU Y.-f., CHEN J.-b., ZHANG B., LI Q.-g., WANG Z.-x., ZHANG H. & WU K.-l. 2017. Cloning, expression, and polymorphism of the ECI1 gene in various pig breeds. J Integr Agr. 16: 1789-99. https://doi.org/10.1016/S2095-3119(16)61624-6
  16. Mortimer S.I., van der Werf J.H., Jacob R.H., Hopkins D.L., Pannier L., Pearce K.L., Gardner G.E., Warner R.D., Geesink G.H., Edwards J.E., Ponnampalam E.N., Ball A.J., Gilmour A.R. & Pethick D.W. 2014. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 96: 1016-24. https://doi.org/10.1016/j.meatsci.2013.09.007
  17. Mourot J., Kouba M. & Peiniau P. 1995. Comparative study of in vitro lipogenesis in various adipose tissues in the growing domestic pig (Sus domesticus). Comp Biochem Physiol B Biochem Mol Biol. 111: 379-84. https://doi.org/10.1016/0305-0491(95)00005-S
  18. Mursula A.M., van Aalten D.M., Hiltunen J.K. & Wierenga R.K. 2001. The crystal structure of ${\Delta}$ 3-${\Delta}$ 2-enoyl-CoA isomerase. J Mol Biol. 309, 845-53. https://doi.org/10.1006/jmbi.2001.4671
  19. Nafikov R.A. & Beitz D.C. 2007. Carbohydrate and lipid metabolism in farm animals. J Nutr. 137: 702-5. https://doi.org/10.1093/jn/137.3.702
  20. Nguyen P., Leray V., Diez M., Serisier S., Bloc'h J.L., Siliart B. & Dumon H. 2008. Liver lipid metabolism. Journal of animal physiology and animal nutrition. 92: 272-83. https://doi.org/10.1111/j.1439-0396.2007.00752.x
  21. O'Hea E.K. & Leveille G.A. 1969. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. J Nutr. 99: 338-44. https://doi.org/10.1093/jn/99.3.338
  22. Park B., Cho S., Yoo Y., Ko J., Kim J., Chae H., Ahn J., Lee J., Kim Y. & Yoon S. 2001. Animal products and processing: Effect of carcass temperature at 3hr post-mortem on pork quality. J. Anim. Sci. Technol (Kor.). 43: 949-54.
  23. Park W.B., An S.M., Yu G.E., Kwon S., Hwang J.H., Kang D.G., Kim T.W., Park H.C., Ha J. & Kim C.W. 2017. The rs196952262 Polymorphism of the AGPAT5 Gene is Associated with Meat Quality in Berkshire Pigs. Korean J Food Sci Anim Resour. 37: 926-30.
  24. Reyer H., Shirali M., Ponsuksili S., Murani E., Varley P.F., Jensen J. & Wimmers K. 2017. Exploring the genetics of feed efficiency and feeding behaviour traits in a pig line highly selected for performance characteristics. Mol Genet Genomics. 292(5): 1001-11. https://doi.org/10.1007/s00438-017-1325-1
  25. Sauna Z.E., Kimchi-Sarfaty C., Ambudkar S.V. & Gottesman M.M. 2007. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res. 67: 9609-12. https://doi.org/10.1158/0008-5472.CAN-07-2377
  26. Scheffler T.L. & Gerrard D.E. 2007. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 77: 7-16. https://doi.org/10.1016/j.meatsci.2007.04.024
  27. van Weeghel M., Ofman R., Argmann C.A., Ruiter J.P., Claessen N., Oussoren S.V., Wanders R.J., Aten J. & Houten S.M. 2014. Identification and characterization of Eci3, a murine kidney-specific Delta3,Delta2-enoyl-CoA isomerase. FASEB J. 28: 1365-74. https://doi.org/10.1096/fj.13-240416
  28. van Weeghel M., te Brinke H., van Lenthe H., Kulik W., Minkler P.E., Stoll M.S., Sass J.O., Janssen U., Stoffel W., Schwab K.O., Wanders R.J., Hoppel C.L. & Houten S.M. 2012. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids. FASEB J. 26: 4316-26. https://doi.org/10.1096/fj.12-206326
  29. Warner R.D., Greenwood P.L., Pethick D.W. & Ferguson D.M. 2010. Genetic and environmental effects on meat quality. Meat Sci. 86: 171-83. https://doi.org/10.1016/j.meatsci.2010.04.042
  30. Wood J., Enser M., Fisher A., Nute G., Whittington F. & Richardson R. 2005. Effects of diets on fatty acids and meat quality. Options Mediterraneennes, Series A. 67: 133-41.
  31. Wood J.D., Nute G.R., Richardson R.I., Whittington F.M., Southwood O., Plastow G., Mansbridge R., da Costa N. & Chang K.C. 2004. Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci. 67: 651-67. https://doi.org/10.1016/j.meatsci.2004.01.007
  32. Wu G., Farouk M.M., Clerens S. & Rosenvold K. 2014. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 98: 637-45. https://doi.org/10.1016/j.meatsci.2014.06.010
  33. Yu G.E., Kwon S., Hwang J.H., An S.M., Park D.H., Kang D.G., Kim T.W., Kim I.S., Park H.C., Ha J. & Kim C.W. 2017. Effects of cell death-inducing DFF45-like effector B on meat quality traits in Berkshire pigs. Genet Mol Res. 16.