DOI QR코드

DOI QR Code

WBAN에서 응급데이타 퍼스트 우선순위 MAC을 위한 공정한 경쟁 채널 할당 방법

A Fair Contention Channel Assignment Scheme for Emergency data -First-Priority MAC in Wireless Body Area Networks

  • 이정재 (송원대학교 컴퓨터정보학과)
  • 투고 : 2018.08.03
  • 심사 : 2018.10.15
  • 발행 : 2018.10.31

초록

우선 순위 기반 MAC프로토콜에서 경쟁이 심한 경쟁접근구간은 더 많은 수의 충돌 및 재전송을 초래할 수 있다. 경쟁접근구간 동안 우선순위가 높은 트래픽은 우선순위가 낮은 트래픽을 지배하여 우선 순위가 낮은 트래픽이 고갈되어 WBAN 처리량, 지연 및 에너지 소비에 악영향을 미친다. 따라서 본 논문에서는 우선 순위가 낮은 트래픽에 대한 공정한 기회를 제공하기 위해 경쟁접근구간에서 경쟁을 줄이는 응급데이터-퍼스트-우선 순위 MAC(: EFP-MAC) 슈퍼 프레임 구조를 제안한다. 시뮬레이션 결과는 제안 된 EFP-MAC이 IEEE 802.15.4 표준에 비해 낮은 에너지 소비, 높은 처리량 및 낮은 대기 시간을 달성함을 보인다.

A Contention Access Period(: CAP) with high contention in priority-based MAC protocols can result in higher number of collisions and retransmissions. High-Priority traffic dominates low-priority traffic during CAP depleting low-priority traffic, adversely affecting WBAN throughput, delay, and energy consumption. This paper proposes a Emergency data-First-Priority MAC(: EFP-MAC) superframe structure that is able to reduce contention in the CAP period, and provides a fair chance for low-priority traffic. As a result, the proposed Emergency data-First Priority MAC(; EFP-MAC) The Simulation results show that the proposed MAC achieves lower energy consumption, higher throughput and low latency than the IEEE 802.15.4 standard.

키워드

참고문헌

  1. S. Park, "Joint Control of Duty Cycle and Beacon Tracking in IEEE 802.15.4 LR-WPAN," J. of the Korea Institute of Electronics Communication Sciences, vol 6, no. 2, 2016, pp. 9-10.
  2. J. Lee and J. Hong, "Performance Improvement of IEEE 802.15.4 MAC for WBAN Environments in Medical," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 1, 2015, pp. 1-6. https://doi.org/10.13067/JKIECS.2015.10.1.1
  3. J. Lee and I. Kim, "A Study on the CSMA/CA Performance Improvement Based on IEEE 802.15.6," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 11, 2015, pp. 1225-1230. https://doi.org/10.13067/JKIECS.2015.10.11.1225
  4. B. Otal, L. Alonso, and C. Verikoukis, "Highly Reliable Energy Saving MAC for Wireless Body Sensor Networks in Health-care Systems," IEEE J. Sel. Areas Commun., vol. 27, no. 1, 2009, pp. 553-565. https://doi.org/10.1109/JSAC.2009.090516
  5. S. Marinkovic, J. Popovici, E.M. Spagnol, C. Faul, and W.P. Marnane, "Energy-efficient Low Duty for Wireless Body Area Networks," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 2, 2009, pp 915-925.
  6. S. Bhandari and S. Moh, "A Priority-based Adaptive MAC Protocol for Wireless Body Area Networks," Sensors, vol. 16. 2016, pp 401. https://doi.org/10.3390/s16030401
  7. R. Laufer and L. Kleinrock, "The Capacity of Wireless CSMA/CA Networks." IEEE/ACM Trans. Netw. vol. 24, 2016, pp. 1518-1532.
  8. O Gama and R. Simoes, "A Hybrid MAC Scheme to Improve the Transmission Performance in Body Sensor Networks." Wirel. Pers. Commun. vol. 80, 2014, pp.1263-1279.
  9. S. Sarkar and S. Mirsa, "Performance analysis of IEEE 802.15.6 MAC protocol under non-ideal channel conditions and saturated traffic regime," IEEE Trans. Comput. vol. 64, 2015, pp 2912-2925. https://doi.org/10.1109/TC.2015.2389806
  10. C. Q. Zhang, Y. L. Wang, Y. Q. Liang, M. Shu, and C.F. Chen, "An Energy-efficient MAC Protocol for Medical Emergency Monitoring Body Sensor Networks," Sensors. vol. 16, 2016, doi:10.3390/s16030385.
  11. J. Son, H. Hong, P. Moon, G. Chang, and H. Cho, "Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks." Sensors vol. 16, 2016, doi:10.3390/s16060815.