DOI QR코드

DOI QR Code

Combination of Hydrophobic Filtration and Enrichment Methods for Detecting Bacillus cereus in Fresh-Cut Cabbage

  • Lee, Sujung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Choi, Yukyung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Heeyoung (Risk Analysis Research Center, Sookmyung Women's University) ;
  • Kim, Sejeong (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Jeeyeon (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Ha, Jimyeong (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Oh, Hyemin (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Yewon (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Kim, Yujin (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Soomin (Risk Analysis Research Center, Sookmyung Women's University)
  • Received : 2018.04.05
  • Accepted : 2018.10.01
  • Published : 2018.10.30

Abstract

This study developed a rapid detection method for Bacillus cereus in fresh-cut cabbages. Fresh-cut cabbage samples were inoculated at 1-, 2- and 3-Log CFU/g, and pathogens were enriched in tryptic soy broth containing 0.15% polymyxin B at $30^{\circ}C$, $37^{\circ}C$, and $42^{\circ}C$ to determine the detection limit and appropriate enrichment temperature for multiplex PCR detection. Enriched bacterial cells in enrichment broth were collected in a hydrophobic filter prior to DNA extraction for multiplex PCR. Filters were resuspended in distilled water, and DNA was extracted from the suspension. DNA samples were further analyzed by multiplex PCR. Detection limit of multiplex PCR was 5-Log CFU/mL. B. cereus cell counts were higher (P < 0.05) at $42^{\circ}C$ than other temperatures. Detection rate of 1-, 2-, and 3-Log CFU/g inoculated samples were 60%, 80%, and 100% after enrichment respectively. However, when enriched samples were filtered with hydrophobic membrane filter, detection rates became 100%, regardless of inoculation level. Results indicate a combination of enrichment with hydrophobic filtration improves rapid detection efficiency of B. cereus in fresh-cut cabbage by multiplex PCR.

본 연구에서는 신선편이 양배추 내 Bacillus cereus의 최적 증균 온도를 선정하고 증균배양액에 소수성필터를 적용하여 multiplex PCR의 검출률을 확인하였다. B. cereus 증균온도는 B. cereus 균주 5 개를 혼합하여 1 Log CFU/mL이 되도록 증균배지에 접종하고 $30^{\circ}C$, $37^{\circ}C$, $42^{\circ}C$에서 증균한 뒤 3시간 간격으로 MYP agar에 도말한 후 계수하여 선정하였다. 소수성필터 미적용 그룹은 B. cereus 균주 5 개를 혼합하여 신선편이 양배추에 접종한 뒤 최적 증균온도에서 증균하였으며, 증균배양액을 가열하여 DNA를 추출한 뒤 multiplex PCR을 진행하였다. 소수성필터 적용 그룹은 증균배양액을 소수성 필터에 적용하고 필터에 있는 균을 멸균증류수로 현탁한 뒤 가열하여 추출된 DNA로 multiplex PCR을 진행하였다. 증균온도 확인 결과, 6시간 증균 시 $42^{\circ}C$에서 증균된 샘플($5.4{\pm}0.3Log\;CFU/mL$)과 $30^{\circ}C$에서 증균된 샘플($4.6{\pm}0.6Log\;CFU/mL$) 간 유의차가 확인되었다(p < 0.05). 소수성필터 적용 유무에 따른 multiplex PCR 결과, 1 Log CFU/g 접종된 샘플의 검출률이 소수성 필터 적용 전 60%(3/5)에서 100%(5/5)로 향상되었다. 2 Log CFU/g 접종 샘플은 소수성필터 적용 전 80%(4/5)에서 소수성 필터 적용 후 100%(5/5)로 검출률이 증가하였으나, 3 Log CFU/g 접종 샘플은 소수성 필터 적용 전후 모두 100%(5/5)로 확인되었다. 이상의 결과를 통해 신선편이 양배추 내 B. cereus 검출 시 증균배양액에 소수성필터를 적용하고 multiplex PCR을 적용했을 때 신속하고 효율적인 검출이 가능할 것으로 판단된다.

Keywords

References

  1. Berger C. N., Sodha S. V., Shaw R. K., Griffin P. M., Pink D., Hand P., Franke G.: Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol., 12, 2385-2397 (2010). https://doi.org/10.1111/j.1462-2920.2010.02297.x
  2. Valero M., Hernandez-herrero L.A., Fernandez P.S., Salmeron M.C.: Characterization of Bacillus cereus isolates from fresh vegetables and refrigerated minimally processed foods by biochemical and physiological tests. Food Microbiol., 19, 491-499 (2002). https://doi.org/10.1006/fmic.2002.0507
  3. Jensen G.B., Hansen B.M., Eilenberg J., Mahillon J.: The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol., 5, 631-640 (2003). https://doi.org/10.1046/j.1462-2920.2003.00461.x
  4. FDA (Food and Drug Administration). Bacteriological Analytical Manual (BAM). Bacillus cereus Media M158: Trypticase Soy-Polymyxin Broth. Available online: https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm-063848.htm (accessed on 5 March 2018).
  5. FDA (Food and Drug Administration). Bacteriological Analytical Manual (BAM). Bacillus cereus. Available online: http://www.fda.gov/Food/FoodScienceResearch/Laboratory-Methods/ucm070875.htm (accessed on 5 March 2018).
  6. Kramer, J.M. and Gilbert, R.J.: Bacillus cereus and other Bacillus species. Ch 2 In: Doyle MP (ED) Foodborne bacterial pathogens. Marcel Dekker, New York, pp. 22-26 (1989)
  7. Valero M., Fernandez P.S., Salmeron M.C.: Influence of pH and temperature on growth of Bacillus cereus in vegetable substrates. Int. J. Food Microbiol., 82, 71-79 (2003). https://doi.org/10.1016/S0168-1605(02)00265-9
  8. FDA (Food and Drug Administration). Bad bug book: Foodborne pathogenic microorganisms and natural toxins handbook. Available from: https://www.fda.gov/downloads/food/ foodsafety/foodborneillness/foodborneillnessfoodbornepathogensnaturaltoxins/ badbugbook/ucm297627.pdf. Accessed Feb. 20, 2018.
  9. Tallent S.M., Kotewicz M.K., Strain E.A., Bennett R.E.: Efficient isolation and identification of Bacillus cereus group. J. AOAC Int., 95, 446-451 (2012). https://doi.org/10.5740/jaoacint.11-251
  10. Cattani F., Barth V.C., Nasario J.S.R., Ferreira C.A.S., Oliveira S.D.: Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR. J. Dairy Sci., 99, 2617-2624 (2016). https://doi.org/10.3168/jds.2015-10019
  11. Porcellato D., Narvhus J., Skeie S.B.: Detection and quantification of Bacillus cereus group in milk by droplet digital PCR. J. Microbiol. Method., 127, 1-6 (2016). https://doi.org/10.1016/j.mimet.2016.05.012
  12. Demeke T., Adams R.P.: The effects of plant polysaccharides and buffer additives on PCR. Biotechniques., 12, 332-334 (1992).
  13. Hu Q., Liu Y., Yi S., Huang D.: A comparison of four methods for PCR inhibitor removal. Forensic Sci Int., 16, 94-97 (2015). https://doi.org/10.1016/j.fsigen.2014.12.001
  14. Schrader C., Schielke A., Ellerbroek L., Johne R.: PCR inhibitors-occurrence, properties and removal. J. Appl. Microbiol., 113, 1014-1026 (2012). https://doi.org/10.1111/j.1365-2672.2012.05384.x
  15. Ganji L., Azimirad M., Farzi N., Alebouyeh M., Shirazi M.H., Eshraghi S.S., Mirshafiey A., Daryani N.E., Zali M.R.: Comparison of the detection limits of the culture and PCR methods for the detection of Clostridium difficile, Clostridium perfringens, Campylobacter jejuni, and Yersinia enterocolitica in human stool, Arch. Pediatr. Infect Dis., 5, 1-7 (2017).
  16. Garrido-Maestu A., Azinheiro S., Carvalho J., Prado M.: Rapid and sensitive detection of viable Listeria monocytogenes in food products by a filtration-based protocol and qPCR. Food Microbiol., 73, 254-263 (2018). https://doi.org/10.1016/j.fm.2018.02.004
  17. Wei T., Lu G., Clover G.: Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. J. Virol. Methods., 151, 132-139 (2008). https://doi.org/10.1016/j.jviromet.2008.03.003
  18. Boddinghaus B., Wichelhaus T. A., Brade V., Bittner T.: Removal of PCR inhibitors by silica membranes: evaluating the amplicor mycobacterium tuberculosis Kit. J. Clin. Microbiol., 39, 3750-3752 (2001). https://doi.org/10.1128/JCM.39.10.3750-3752.2001
  19. Gisendorf B. A. J., Quint W. G. V., Henkens M. H. C., Stegeman H., Huf F. A., Niesters H. G. M.: Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl. Environ. Microbiol., 58, 3804-3808 (1992).
  20. Venkateswaras K., Kamijoh Y., Ohashi E., Nakanishia H.: Simple filtration technique to detect enterohemorrhagic Escherichia coli O157:H7 and its toxins in beef by multiplex PCR. Appl. Environ. Microbiol., 63, 4127-4131 (1997).
  21. Nabil E. B., Duron J., Gingras D., Lippe R.: Quantitative evaluation of protein heterogeneity within herpes simplex virus 1 particles. J. Virol., 91, (2017).
  22. Elhariry H. M.: Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol., 28, 1266-1274 (2011). https://doi.org/10.1016/j.fm.2011.05.004
  23. Wu X., Han C., Chen J., Huang Y. W., Zhao Y.: Rapid detection of pathogenic bacteria from fresh produce by filtration and surface-enhanced raman spectroscopy. JOM., 68, 1156-1162 (2016). https://doi.org/10.1007/s11837-015-1724-x
  24. Sur K., Mcfall S. M., Yeh E. T., Jangam S. R., Hayden M. A., Stroupe S. D., Kelso D. M.: Immiscible phase nucleic acid purification eliminates PCR inhibitors with a single pass of paramagnetic particles through a hydrophobic liquid. J. Mol. Diagn., 12, 620-628 (2012).