DOI QR코드

DOI QR Code

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A. (Department of Mechanical Engineering, Quchan University of Technology)
  • Received : 2018.01.05
  • Accepted : 2018.08.20
  • Published : 2018.10.25

Abstract

This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Keywords

References

  1. Ansari, R. and Gholami, R. (2016), "Nonlinear primary resonance of third-order deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes", Compos. Struct., 154, 707-723. https://doi.org/10.1016/j.compstruct.2016.07.023
  2. Ansari, R., Faghih Shojaei, M., Mihammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
  3. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahbodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low-Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
  4. Ansari, R., Pourashraf, T., Gholami, R. and Shahbodini, A. (2016), "Analytical solution for nonlinear post buckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers", Compos. Part B: Eng., 90, 267-277. https://doi.org/10.1016/j.compositesb.2015.12.012
  5. Benedict, T. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nano-tube-reinforced composite shell structures", Acta Mech., 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z
  6. Fazelzadeh, S.A., Pouresmaeeli, S. and Ghavanloo, E. (2015), "Aeroelastic characteristic of functionally graded carbon nanotube- reinforced composite plates under a supersonic flow", Comput. Meth. Appl. Mech. Eng., 285, 714-729. https://doi.org/10.1016/j.cma.2014.11.042
  7. Gholami, R. and Ansari, R. (2017), "Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates", Compos. Struct., 180, 760-771. https://doi.org/10.1016/j.compstruct.2017.08.053
  8. Gholami, R. and Ansari, R. (2018) "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019
  9. Gholami, R., Ansari, R. and Gholami, Y. (2017) "Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams", Compos. Struct., 174, 45-58. https://doi.org/10.1016/j.compstruct.2017.04.042
  10. Gorbanpour Arani, A. and Haghparast, E. (2017), "Vibration analysis of axially moving carbon nanotube reinforced composite plate under initial tension", Polym. Compos., 38(4), 814-822. https://doi.org/10.1002/pc.23642
  11. Gorbanpour Arani, A., Haghparast, E. and Babakbar Zaeri, H. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529
  12. Gorbanpour Arani, A., Haghparast, E. and Babakbar, Z. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105
  13. Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nano-tubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063
  14. He, J.H. (1999), "Homotopy perturbation technique", Comput. Meth. Appl. Mech. Eng., 178, 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  15. Iijima, S.J. (1991), "Helical microtubules of graphitic carbon", Nat., 354, 56-58. https://doi.org/10.1038/354056a0
  16. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nano-tube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  17. Kiani, Y. (2016), "Free vibration of FG-CNT reinforced composite skew plates", Aerosp. Sci. Technol., 58, 178-188. https://doi.org/10.1016/j.ast.2016.08.018
  18. Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381. https://doi.org/10.1016/j.compstruct.2016.09.079
  19. Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007
  20. Memar Ardestani, M., Zhang, L.W. and Liew, K.M. (2017), "Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates", Comput. Meth. Appl. Mech. Eng., 317, 341-379. https://doi.org/10.1016/j.cma.2016.12.009
  21. Mirzaei, M. and Kiani, Y. (2016), "Fee vibration of functionally graded carbon nanotube reinforced composite cylindrical panels, Compos. Struct., 142, 45-56. https://doi.org/10.1016/j.compstruct.2015.12.071
  22. Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nano-tube-reinforced composite plates with cutout", Beilst. J. Nanotechnol., 7(1), 511-523. https://doi.org/10.3762/bjnano.7.45
  23. Rafiee, M., He, X.Q. and Liew, K.M. "Non-linear analysis of piezoelectric nanocomposite energy harvesting plates", Smart Mater. Struct., 23, 065001. https://doi.org/10.1088/0964-1726/23/6/065001
  24. Ribeiro, P. (2016), "Non-local effects on the non-linear modes of vibration of carbon nano-tubes under electrostatic actuation", Int. J. Non-Lin. Mech., 87, 1-20. https://doi.org/10.1016/j.ijnonlinmec.2016.07.007
  25. Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Struct., 163, 350-364. https://doi.org/10.1016/j.compstruct.2016.11.011
  26. Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Impact analysis of CNT-reinforced composite plates based on Reddy's higher-order shear deformation theory using an element-free approach", Compos. Struct., 170, 228-242. https://doi.org/10.1016/j.compstruct.2017.03.026
  27. Shams, S. and Soltani, B. (2016), "Buckling of laminated carbon nano-tube-reinforced composite plates on elastic foundations using a mesh free method", Arab. J. Sci. Eng., 41(5), 1981-1993. https://doi.org/10.1007/s13369-016-2051-4
  28. Shen, H.S. (2012), "Thermal buckling and post buckling behavior of functionally graded carbon nano-tube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
  29. Singh, G., Raju, K.K. and Rao, G.V. (1990), "Non-linear vibrations of simply supported rectangular cross-ply plates", J. Sound Vibr., 142, 213-226. https://doi.org/10.1016/0022-460X(90)90553-C
  30. Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025
  31. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nano-tube-reinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
  32. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
  33. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Meth. Appl. Eng., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024
  34. Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic response of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020