DOI QR코드

DOI QR Code

Enhancement of Signal-to-noise Ratio Based on Multiplication Function for Phi-OTDR

  • Li, Meng (Key Laboratory of Operation Programming & Safety Technology of Air Traffic Management, Civil Aviation University of China) ;
  • Xiong, Xinglong (Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China) ;
  • Zhao, Yifei (Key Laboratory of Operation Programming & Safety Technology of Air Traffic Management, Civil Aviation University of China) ;
  • Ma, Yuzhao (Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China)
  • Received : 2018.05.24
  • Accepted : 2018.08.01
  • Published : 2018.10.25

Abstract

We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration's position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.

Keywords

References

  1. S. Xie, Q. Zou, L. Wang, M. Zhang, Y. Li, and Y. Liao, "Positioning error prediction theory for dual Mach-Zehnder interferometric vibration sensor," J. Lightw. Technol. 29, 362-368 (2011). https://doi.org/10.1109/JLT.2010.2102339
  2. Z. J. Yu, Y. Lu, X. Y. Hu, and Z. Meng, "Polarization dependence of the noise of phase measurement based on phasesensitive OTDR," J. Opt. 19, 125602 (2017). https://doi.org/10.1088/2040-8986/aa924e
  3. X. Zhang, T. Liu, K. Liu, J. Jiang, Z. Ding, and Q. Chen, "Reducing location error and processing time of dual Mach-Zehnder interferometric fiber perturbation sensor using zero-crossing analysis," in Proc. SPIE 8421, 8421A8 (2012).
  4. C. Pan, X. Liu, H. Zhu, X. Shan, and X. Sun, "Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR," Opt. Express 25, 20056-20070 (2017). https://doi.org/10.1364/OE.25.020056
  5. J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillén, F. DeSmet, W. Postvoll, and M. Gonzalez-Herraez, "Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system," J. Lightw. Technol. 34, 4445-4453 (2016). https://doi.org/10.1109/JLT.2016.2542981
  6. Q. Sun, H. Feng, X. Yan, and Z. Zeng, "Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction," Sensors (Basel) 15, 15179-15197 (2015). https://doi.org/10.3390/s150715179
  7. F. Peng, N. Duan, Y. Rao, and J. Li, "Real-time position and speed monitoring of trains using phase-sensitive OTDR," IEEE Photon. Technol. Lett. 26, 2055-2057 (2014). https://doi.org/10.1109/LPT.2014.2346760
  8. J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed optical fibre sensing system enabling location of disturbances in a sagnac loop interferometer," Proc. SPIE 0838, 325-328.
  9. Q. Z. Sun, D. M. Liu, J. Wang, and H. R. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008). https://doi.org/10.1016/j.optcom.2007.11.055
  10. L. B. Yuan, and F. Ansari, "White-light interferometric fiber-optic distributed strain-sensing system," Sens. Actuators A, 63, 177-181 (1997). https://doi.org/10.1016/S0924-4247(97)80502-X
  11. X. B. Hong, J. Wu, C. Zuo, F. S. Liu, H. X. Guo, and K. Xu, "Dual Michelson interferometers for distributed vibration detection," Appl. Opt. 50, 4333-4338 (2011). https://doi.org/10.1364/AO.50.004333
  12. E. Patrick, L. Matthieu, and J. Zhang, "Photon counting OTDR: advantages and limitations," J. Lightw. Technol. 28, 952-964(2010). https://doi.org/10.1109/JLT.2009.2039635
  13. H. Wu, S. Xiao, and X. Li, "Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry ($\phi$-OTDR)," J. Lightw. Technol. 33, 3156-3162 (2015). https://doi.org/10.1109/JLT.2015.2421953
  14. T. Zhu, Q. He, X. Xiao, and X. Bao, "Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution," Opt. Express 21, 2953-2963 (2013). https://doi.org/10.1364/OE.21.002953
  15. X. Mei, F. Pang, H. Liu, G. Yu, Y. Shao, T. Qian, C. Mou, L. Lv, and T. Wang, "Fast coarse-fine locating method for $\phi$-OTDR," Opt. Express 26, 2659-2667 (2018) https://doi.org/10.1364/OE.26.002659
  16. Z. Zhang, and X. Bao, "Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system," Opt. Express 16, 10240-10247 (2008). https://doi.org/10.1364/OE.16.010240
  17. A. Li, Y. Wang, and Q. Hu, "Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR," Opt. Lett. 39, 6418-6421(2014). https://doi.org/10.1364/OL.39.006418
  18. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, "Distributed fiber-optic vibration sensor system," J. Lightw. Technol. 23, 2081-2087 (2005). https://doi.org/10.1109/JLT.2005.849924
  19. X. Bao and L. Chen, "Recent progress in distributed fiber optic sensors," Sensors (Basel) 12, 8601-8639 (2012). https://doi.org/10.3390/s120708601
  20. X. Fan, G. Yang, S. Wang, Q. Liu, and Z. He, "Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry," J. Lightw. Technol. 35, 3281-3288 (2017). https://doi.org/10.1109/JLT.2016.2604859
  21. F. Peng, H. Wu, X.-H. Jia, Y.-J. Rao, Z.-N. Wang, and Z.-P. Peng, "Ultra-long high-sensitivity $\phi$-OTDR for high spatial resolution vibration detection of pipelines," Opt. Express 22, 13804-13810 (2014). https://doi.org/10.1364/OE.22.013804
  22. H. He, L. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, "Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing," Opt. Express 24, 4842-4855 (2016). https://doi.org/10.1364/OE.24.004842
  23. X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, "A high performance distributed optical fiber sensor based on $\phi$-OTDR for dynamic strain measurement," IEEE Photon. J. 9, 1-12 (2017).
  24. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, "The development of an phi-OTDR system for quantitative vibration measurement," IEEE Photon. Technol. Lett. 27, 1349-1352 (2015). https://doi.org/10.1109/LPT.2015.2421354
  25. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, "Coherent $\phi$-OTDR based on I/Q demodulation and homodyne detection," Opt. Express 24, 853-858 (2016). https://doi.org/10.1364/OE.24.000853
  26. H. He, L. Y. Shao, Z. Li, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, "Self-mixing demodulation for coherent phase-sensitive OTDR system," Sensors (Basel) 16, 681 (2016). https://doi.org/10.3390/s16050681
  27. Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, "Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer," Appl. Opt. 55, 7810-7815 (2016). https://doi.org/10.1364/AO.55.007810
  28. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herraez, "Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over >100 km," J. Lightw. Technol. 8, 1510-1518 (2014).
  29. B. Lu, Z. Pan, Z. Wang, H. Zheng, Q. Ye, R. Qu, and H. Cai, "High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse," Opt. Lett. 42, 391-394 (2017). https://doi.org/10.1364/OL.42.000391
  30. Y. Lu, T. Zhu, L. Chen, and X. Bao, "Distributed vibration sensor based on coherent detection of phase-OTDR," J. Lightw. Technol. 28, 3243-3249 (2010).
  31. Z. Qin, L. Chen, and X. Bao, "Continuous wavelet transform for non-stationary vibration detection with phase-OTDR," Opt. Express 20, 20459-20465 (2012). https://doi.org/10.1364/OE.20.020459
  32. H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, and Y. Rao, "Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry ($\phi$-OTDR)," J. Lightw. Technol. 33, 3156-3162 (2015). https://doi.org/10.1109/JLT.2015.2421953
  33. Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, "Phase-sensitive OTDR system based on digital coherent detection," in Proc. Asia Communications and Photonics Conference and Exhibition (China, Nov. 2011), 83110S.
  34. H. He, L. Shao, H. Li, W. Pan, B. Luo, X. Zou, and L. Yan, "SNR enhancement in phase-sensitive OTDR with adaptive 2-D Bilateral filtering algorithm," IEEE Photon. J. 9, 1-10 (2017).
  35. J. H. Zhang, Y. C. Han, L. Z. Li, J. Liu, and B. Che, "An improved EMD time-frequency analysis method for rocket vibration signal," in Proc Chinese Guidance, Navigation and Control Conference (China, Aug. 2014), pp. 1842-1846.
  36. H. Deng, J. G. Liu, and Z. Chen, "Infrared small target detection based on modified local entropy and EMD," Chi. Opt. Lett. 8, 24-28 (2010). https://doi.org/10.3788/COL20100801.0024
  37. K. Liu, M. Tian, J. F. Jiang, J. C. An, and T. H. Xu "An improved positioning algorithm in a long-range asymmetric perimeter security system," J. Lightw. Technol. 34, 5278-5283 (2016). https://doi.org/10.1109/JLT.2016.2615646
  38. N. E. Hang, Z. Shen, S. R. Long, and M. C. Wu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. London, Ser. A 454, 903-995 (1998). https://doi.org/10.1098/rspa.1998.0193
  39. Y. Kopsinis and S. McLaughlin, "Development of EMD-based denoising methods inspired by wavelet thresholding," IEEE Trans. Signal Process. 57, 1351-1362 (2009). https://doi.org/10.1109/TSP.2009.2013885
  40. A. Liao, C. Shen, and P. C. Li, "Potential contrast improvement in ultrasound pulse inversion imaging using EMD and EEMD," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 317-326 (2010). https://doi.org/10.1109/TUFFC.2010.1412
  41. S. D. Hawley, L. E. Atlas, and H. J. Chizeck, "Some properties of an empirical mode type signal decomposition algorithm," IEEE Signal Process. Lett. 17, 24-27 (2010). https://doi.org/10.1109/LSP.2009.2030855