DOI QR코드

DOI QR Code

Study on Reflectance Improvement of Al-Ti Based Oxide Thin Films for Semitransparent Solar Cell Applications

반투명 태양전지용 Al-Ti계 산화물 박막의 반사율 특성 개선에 관한 연구

  • Lee, Eun Kyu (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Jeong, So Un (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Bang, Ki Su (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Lee, Seung-Yun (Department of Advanced Materials Engineering, Hanbat National University)
  • 이은규 (한밭대학교 신소재공학과) ;
  • 정소운 (한밭대학교 신소재공학과) ;
  • 방기수 (한밭대학교 신소재공학과) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Received : 2018.08.24
  • Accepted : 2018.09.03
  • Published : 2018.11.01

Abstract

This work reports the preparation of Al-Ti based oxide thin films and their optical properties. Although the transmittance of a $TiO_2/Al2O_3$ bilayer structure was as high as 90% at wavelengths of 600 nm or larger, the reflectance of the bilayer reached its minimum at wavelengths of around 360 nm. The transmittance of an 89-nm-thick $TiO_2$ thin film rapidly increased and then decreased at a critical wavelength because of destructive interference. The wavelength corresponding to the reflectance minimum increased after an increase in $TiO_2$ film thickness. The smooth surface morphology of the AlTiO thin film was retained up to a film thickness of 65 nm, and the transmittance of the film was inversely proportional to film thickness, in accordance with the general tendency for optical films. The reflectance of the AlTiO film at visible light wavelengths was lower than that of the $TiO_2$ film, which implies that the AlTiO film is suitable for applications as an optical thin film layer in semitransparent solar cells.

Keywords

References

  1. B. Parida, S. Iniyan, and R. Goic, Renewable Sustainable Energy Rev., 15, 1625 (2011). [DOI: https://doi.org/10.1016/j.rser.2010.11.032]
  2. C. Battaglia, A. Cuevas, and S. De Wolf, Energy Environ. Sci., 9, 1552 (2016). [DOI: https://doi.org/10.1039/C5EE03380B]
  3. R. J. Yang, Autom. Constr., 51, 92 (2015). [DOI: https://doi.org/10.1016/j.autcon.2014.12.005]
  4. M. Gratzel, J. Photochem. Photobiol., C, 4, 145 (2003). [DOI: https://doi.org/10.1016/S1389-5567(03)00026-1]
  5. J. W. Lim, D. J. Lee, S. H. Lee, and S. J. Yun, Mater. Res. Bull., 58, 153 (2014). [DOI: https://doi.org/10.1016/j.materresbull.2014.03.016]
  6. W. Liao and S. Xu, Energy, 83, 267 (2015). [DOI: https://doi.org/10.1016/j.energy.2015.02.023]
  7. H. J. Yoon, Y. Jo, S. Jeong, J. W. Lim, and S. Y. Lee, Appl. Phys. Express, 11, 052302 (2018). [DOI: https://doi.org/10.7567/APEX.11.052302]
  8. H. C. Barshilia, Sol. Energy Mater. Sol. Cells, 130, 322 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.07.037]
  9. H. J. Yoon, K. S. Bang, J. W. Lim, and S. Y. Lee, J. Mater. Sci.: Mater. Electron., 27, 11358 (2016). [DOI: https://doi.org/10.1007/s10854-016-5260-4]
  10. S. H. Lee, S. J. Yun, M. Shin, and J. W. Lim, Sol. Energy Mater. Sol. Cells, 117, 519 (2013). [DOI: https://doi.org/10.1016/j.solmat.2013.07.029]
  11. S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: https://doi.org/10.1007/s11664-014-3286-z]
  12. J. W. Lim, S. J. Yun, and H. T. Kim, Jpn. J. Appl. Phys., 47, 6934 (2008). [DOI: https://doi.org/10.1143/JJAP.47.6934]
  13. H. A. Macleod, Thin-Film Optical Filters, 3rd edition (CRC press, Bristol and Philadelphia, 2001) p. 5.
  14. S. U. Jeong, J. W. Lim, and S. Y. Lee, J. Korean Vac. Soc., 21, 22 (2012). [DOI: https://doi.org/10.5757/JKVS.2012.21.1.22]