DOI QR코드

DOI QR Code

Structural Stability for Pt Line and Cross-Bar Sub-Micron Patterns

고정렬 Pt 라인 및 크로스-바 미세패턴의 구조적 안정성 연구

  • Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
  • 박태완 (한국세라믹기술원 전자융합소재본부) ;
  • 박운익 (한국세라믹기술원 전자융합소재본부)
  • Received : 2018.09.11
  • Accepted : 2018.09.27
  • Published : 2018.11.01

Abstract

This study discusses and demonstrates the structural stability of highly ordered Pt patterns formed on a transparent and flexible substrate through the process of nanotransfer printing (nTP). Bending tests comprising approximately 1,000 cycles were conducted for observing Pt line patterns with a width of $1{\mu}m$ formed along the direction of the horizontal (x-axis) and vertical (y-axis) axes ($15mm{\times}15mm$); and adhesion tests were performed with an ultrasonicator for a period greater than ten minutes, to analyze the Pt crossbar patterns. The durability of both types of patterns was systematically analyzed by employing various microscopes. The results show that the Pt line and Pt crossbar patterns obtained through nTP are structurally stable and do not exhibit any cracks, breaks, or damages. These results corroborate that nTP is a promising nanotechnology that can be applied to flexible electronic devices. Furthermore, the multiple patterns obtained through nTP can improve the working performance of flexible devices by providing excellent structural stability.

Keywords

References

  1. K. H. Kim, S. K. Hong, N. S. Jang, S. H. Ha, H. W. Lee, and J. M. Kim, ACS Appl. Mater. Interfaces, 9, 17499 (2017). [DOI: https://doi.org/10.1021/acsami.7b06119]
  2. W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, and S. W. Kim, ACS Nano, 9, 3501 (2015). [DOI: https://doi.org/10.1021/nn507221f]
  3. J. Jang, H. G. Im, J. Jin, J. Lee, J. Y. Lee, and B. S. Bae, ACS Appl. Mater. Interfaces, 8, 27035 (2016). [DOI: https://doi.org/10.1021/acsami.6b07140]
  4. S. Kim, H. J. Kwom, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. S. Kee, and S. Y. Lee, Adv. Mater., 23, 3511 (2011). [DOI: https://doi.org/10.1002/adma.201101066]
  5. X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y. Deng, X. Han, T. Wu, W. Hu, and J. Lu, Adv. Energy Mater., 7, 1700799 (2017). [DOI: https://doi.org/10.1002/aenm.201700779]
  6. C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee, and P. S. Lee, ACS Nano, 8, 316 (2014). [DOI: https://doi.org/10.1021/nn404061g]
  7. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  8. K. Takei, W. Honda, S. Harada, T. Arie, and S. Akita, Adv. Healthcare Mater., 4, 487 (2015). [DOI: https://doi.org/10.1002/adhm.201400546]
  9. S. Choi, H. Lee, R. Ghaffari, T. Hyeon, and D. H. Kim, Adv. Mater., 28, 4203 (2016). [DOI: https://doi.org/10.1002/adma.201504150]
  10. J. Jin, D. Lee, H. G. Im, Y. C. Han, E. G. Jeong, M. Rolandi, K. C. Choi, and B. S. Bae, Adv. Mater., 28, 5169 (2017). [DOI: https://doi.org/10.1002/adma.201600336]
  11. M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, npj Flexible Electron., 2, 10 (2018). [DOI: https://doi.org/10.1038/s41528-018-0023-3]
  12. L. Huang, D. Santiago, P. Loyselle, and L. Dai, Small (2018) e. 1800879. [DOI: https://doi.org/10.1002/smll.201800879]
  13. J. H. Jun, H. Song, C. Kim, I. S. Choi, Y. Jeong, and J. H. Lee, Small (2018) e. 1702145. [DOI: https://doi.org/10.1002/smll.201702145]
  14. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H. I. Jang, J. H. Park, S. Y. Lee, C. O. Park, and Y. S. Jung, Nat. Commun., 5, 5387 (2014). [DOI: https://doi.org/10.1038/ncomms6387]
  15. J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. Chae, and Y. S. Jung, Adv. Mater., 24, 3526 (2012). [DOI: https://doi.org/10.1002/adma.201200356]