DOI QR코드

DOI QR Code

The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment

열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성

  • Kim, Hyun-Soo (Department of Smart Media, Chungkang College of Cultural Industries) ;
  • Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
  • 김현수 (청강문화산업대학교 스마트미디어전공) ;
  • 장경욱 (가천대학교 전기공학과)
  • Received : 2018.08.06
  • Accepted : 2018.08.29
  • Published : 2018.11.01

Abstract

In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

Keywords

References

  1. J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
  2. P. G. Su and T. T. Pan, Mater. Chem. Phys., 125, 351 (2001). [DOI: https://doi.org/10.1016/j.matchemphys.2010.11.001]
  3. S. H. Lee, J. S. Im, S. C. Kang, T. S. Bae, S. J. In, E. Jeong, and Y. S. Lee, Chem. Phys. Lett., 497, 191 (2010). [DOI: https://doi.org/10.1016/j.cplett.2010.08.002]
  4. J. G. Park and K. J. Lee, J. Kor. Inst. Met. & Mater., 13, 38 (2000).
  5. G. Wiegleb and J. Heitbaum, Sens. Actuators, B, 17, 93 (1994). [DOI: https://doi.org/10.1016/0925-4005(94)87035-7]
  6. D. E. Williams, Sens. Actuators, B, 57, 1 (1999). [DOI: https://doi.org/10.1016/S0925-4005(99)00133-1]
  7. S. Iijima, Nature, 38, 556 (1991).
  8. K. Lee, J. W. Lee, K. Y. Dong, and B. K. Ju, Sens. Actuators, B, 135, 214 (2008). [DOI: https://doi.org/10.1016/j.snb.2008.08.031]
  9. S. M. Lee, K. H. An, Y. H. Lee, G. Seifert, and T. Frauenheim, J. Am. Chem. Soc., 123, 5059 (2001). [DOI: https://doi.org/10.1021/ja003751+]
  10. S. Sharma, S. Hussain, S. Singh, and S. S. Islam, Sens. Actuators, B, 194, 213 (2014). [DOI: https://doi.org/10.1016/j.snb.2013.12.050]
  11. J. Suehiro, H. Imakiire, S. I. Hidaka, W. Ding, G. Zhou, K. Imsaka, and M. Hare, Sens. Actuators, B, 114, 943 (2006). [DOI: https://doi.org/10.1016/j.snb.2005.08.043]
  12. S. Ji, H. Wang, T. Wang, and D. Yan, Adv. Mater., 25, 1755 (2013). [DOI: https://doi.org/10.1002/adma.201204134]
  13. E. H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux, and E. Llobet, Thin Solid Films, 515, 8322 (2007). [DOI: https://doi.org/10.1016/j.tsf.2007.03.017]
  14. T. Ueda, S. Katsuki, N. H. Abhari, T. Ikegami, F. Mitsugi, and T. Nakamiya, Surf. Coat. Technol., 202, 5325 (2008). [DOI: https://doi.org/10.1016/j.surfcoat.2008.06.009]
  15. K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 589 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.9.589]
  16. H. S. Kim and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 325 (2013). [DOI: https://doi.org/10.4313/JKEM.2013.26.4.325]
  17. H. S. Kim, W. J. Lee, Y. S. Park, and K. U. Jang., J. Korean Inst. Electr. Electron. Mater. Eng., 29, 312 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.5.312]
  18. J. O. Lee, KIC News, 12, 13 (2009).
  19. H. S. Kim, S. H. Lee, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 707 (2013). [DOI: https://doi.org/10.4313/JKEM.2013.26.9.707]
  20. J. H. Son, H. S. Kim, Y. S. Park, and K. U. Jang. J. Korean Inst. Electr. Electron. Mater. Eng., 31, 188 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.3.188]
  21. B. A. Albiss, W. A. Safhaneh, I. Jumah, and I. M. Obaidat, IEEE Sens. J., 10, 1807 (2010). [DOI: https://doi.org/10.1109/JSEN.2010.2049739]
  22. E. S. Ahn, H. C. Jung, N. L. Hung, D. H. Oh, H. J. Kim, and D. J. Kim, Korean J. Mater. Res., 19, 631 (2009). [DOI: https://doi.org/10.3740/MRSK.2009.19.11.631]
  23. M. K. Kwon and Y. T. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 151 (2009). [DOI: https://doi.org/10.4313/JKEM.2009.22.2.151]
  24. L. Wang, S. Wang, H. Zhang, Y. Wang, J. Yang, and W. Huang, New J. Chem., 38, 2530 (2014). [DOI: https://doi.org/10.1039/c3nj01562a]
  25. J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, and S. Wu, Sens. Actuators, B, 139, 411 (2009). [DOI: https://doi.org/10.1016/j.snb.2009.03.014]
  26. L. Wang, S. Wang, H. Zhang, Y. Wang, J. Yang, and W. Huang, New J. Chem., 38, 2530 (2014). [DOI: https://doi.org/10.1039/c3nj01562a]
  27. A. Abdellah, A. Abdelhalim, F. Loghin, P. Kohler, Z. Ahmad, G. Scarpa, and P. Lugli, IEEE Sens. J., 13, 4014 (2013). [DOI: https://doi.org/10.1109/JSEN.2013.2265775]
  28. L. Wang, S. Wang, M. Xu, X. Hu, H. Zhang, Y. Wang, and W. Huang, Phys. Chem. Chem. Phys., 15, 17179 (2013). [DOI: https://doi.org/10.1039/c3cp52392f]
  29. Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu, W. Zhang, H. Yu, M. Li, Z. Huang, J. Zang, F. Yi, and H. Liu, Chem. Mater., 28, 1205 (2016). [DOI: https://doi.org/10.1021/acs.chemmater.5b04850]
  30. H. S. Kim, K. U. Jang, and T. W. Kim, J. Korean Phys. Soc., 68, 797 (2016). [DOI: https://doi.org/10.3938/jkps.68.797]