DOI QR코드

DOI QR Code

Quantum Dot and Iron Oxide Nanoparticle-Loaded Chitosan Nanoparticles for Cancer Imaging

양자점과 산화철 나노입자가 함유된 키토산 나노입자를 이용한 암 영상화 연구

  • Kim, Min Ah (Department of Biomedical Engineering, Chonnam National University Graduated School) ;
  • Jeong, Hwan-Jeong (Department of Nuclear Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School) ;
  • Lee, Chang-Moon (Department of Biomedical Engineering, Chonnam National University Graduated School)
  • 김민아 (전남대학교 바이오메디컬공학협동과정) ;
  • 정환정 (전북대학교병원 핵의학과) ;
  • 이창문 (전남대학교 바이오메디컬공학협동과정)
  • Received : 2018.08.10
  • Accepted : 2018.08.16
  • Published : 2018.09.30

Abstract

In this study, we report superparamagnetic iron oxide nanoparticles (SPION) and quantum dots (Q-Dots)-loaded glycol chitosan (GC) nanoparticles as a dual imaging probe for tumor imaging. From GC modified with histidine self-assembled GC nanoparticles containing SPION and Q-Dots were prepared as a dual imaging probe. Tumor accumulation of the GC nanoparticles was investigated through optical and magnetic resonance imaging in a MDA-MB231 breast mouse cancer model. The SPION and Q-Dots-loaded GC nanoparticles were successfully accumulated into tumor by prolonged circulation and enhanced permeability and retention effect. As expected, in ex vivo study, the SPION and Q-Dots-loaded GC nanoparticles showed higher uptake in tumor than the other organs. The SPION and Q-Dots-loaded GC nanoparticles are a promising imaging agent for cancer imaging and can be used as a cancer-targeted drug delivery for chemotherapy.

본 연구에서는 종양을 영상화하기 위해 SPION과 Q-Dots을 함유한 NAHis-GC 나노입자를 제조하고 형태와 크기 측정 및 종양 내 축적을 optical imaging 및 MR imaging을 통해 다음과 같은 결과를 얻었다. NAHis-GC는자기조립나노입자가형성되었고소수성코어 부분에 SPION과 Q-Dots을 성공적으로 로딩되었다. SPION과 Q-Dots을 함유한 NAHis-GC 나노입자는 EPR 효과에 의해 종양조직에 축적되었고 두 가지 optical imaging과 MR imaging을 동시에 수행할 수 있었다. 이러한 결과를 통해, SPION과 Q-Dots을 함유한 NAHis-GC 나노입자는 optical imaging과 MR imaging 조영제로써 사용 가능성이 있고 더 나아가 약물을 함께 전달할 수 있어서 테라노스틱 제제로 유용할 것이다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Bao, G., Mitragotri, S., and Tong, S.: Multifunctional nanoparticles for drug delivery and molecular imaging. Ann. Rev. Biomed. Eng. 2013, 15, 253-282.
  2. Shi, J., Sun, X., Zheng, S., Li, J., Fu, X., and Zhang, H.: A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials 2018, 152, 15-23.
  3. Zhang, B., Li, Q., Yin, P., Rui, Y., Qiu, Y., Wang, Y., and Shi, D.: Ultrasound-triggered BSA/SPION hybrid nanoclusters for liver-specific magnetic resonance imaging. ACS Appl. Mater. Interfaces. 2012, 4, 6479-6486.
  4. Alwi, R., Telenkov, S., Mandelis, A., Leshuk, T., Gu, F., Oladepo, S., and Michaelian, K.: Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed. Opt. Express 2012, 3, 2500-2509.
  5. Lee, C. M., Jeong, H. J., Kim, E. M., Kim, D. W., Lim, S. T., Kim, H. T., Park, I. K., Jeong, Y. Y., Kim, J. W., and Sohn, M. H.: Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn. Reson. Med. 2009, 62, 1440-1446.
  6. Andrade, A. L., Valente, M. A., Ferreira, J. M. F., and Fabris, J. D.: Preparation of size-controlled nanoparticles of magnetite. J. Magn. Magn. Mater. 2012, 324, 1753-1757.
  7. Qiao, H., Wang, Y., Zhang, R., Gao, Q., Liang, X., Gao, L., Jiang, Z., Qiao, R., Han, D., Zhang, Y., Qiu, Y., Tian, J., and Gao, M.: MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on $Fe_3O_4$ nanoparticles. Biomaterials 2017, 112, 336-345.
  8. Manjceevan, A. and Bandara, J.: Robust surface passivation of trap sites in PbS q-dots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 157-163.
  9. Misra, R. D. K.: Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine 2008, 3, 271-274.
  10. Lee, C. M., Jang, D. R., Cheong, S. J., Kim, E. M., Jeong, M. H., Kim, S. H., Kim, D. W., Lim, S. T., Sohn, M. H., and Jeong, H. J.: Surface engineering of quantum dots for in vivo imaging. Nanotechnology 2010, 21, 285102.
  11. Mansur, H. S., Mansur, A. A. P., Curti, E., and Almeida, M. V. D.: Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. Journal of Materials Chemistry B. 2013, 1, 1696-1711.
  12. Lee, C. M., Park, J. W., Kim, J., Kim, D. W., Jeong, H. J., and Lee, G. Y.: Influence of histidine on the release of all-trans retinoic acid from self-assembled glycol chitosan nanoparticles. Drug Dev. Ind. Pharm. 2016, 36, 781-786.
  13. Lee, C. M., Jeong, H. J., Cheong, S. J., Kim, E. M., Kim, D. W., Lim, S. T., and Sohn, M. H.: Prostate cancer-targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm. Res. 2010, 27, 712-721.
  14. Saravanakumar, G., Min, K. H., Min, D. S., Kim, A. Y., Lee, C. M., Cho, Y. W., Lee, S. C., Kim, K., Jeong, S. Y., Park, K., Park, J. H., and Kwon, I. C.; Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. J. Control. Release 2008, 140, 210-217.
  15. Park, J. S., Han, T. H., Lee, K. Y., Han, S. S., Hwang, J. J., Moon, D. H., Kim, S. Y., and Cho, Y. W.: N-acetyl histidineconjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J. Control. Release 2006, 115, 37-45.